Robust Reduced Order Models Of A Wake Controlled By Jets

Jessie Weller Edoardo Lombardi Angelo Iollo

Institut de Mathématiques de Bordeaux INRIA project MC2

Acknowledgments : We thank S. Camarri and M.-V. Salvetti from University of Pisa for help with adding the jets to the Navier-Stokes code

7th Ercoftac Sig33 - Flubio Workshop on Open issues in transistion and flow control october 16-18 2008

Setup

► Confined square cylinder + incompressible Navier-Stokes at Re=150

Choice of actuation

Two types of actuation were used :

Precomputed control law A function c(t) defined on [0, T_{max}] was chosen before starting the computation and given as input to the Navier-Stokes equations. Outside this time interval c(t) = 0.

► Feedback control law Function *c*(*t*) is defined as a proportional feedback law :

$$c(t) = \sum_{j=1}^{N_s} K_j v(\mathbf{x}_j, t)$$

where x_{j} is a point in the cylinder wake, K_{j} a gain coefficient and $\mathit{N_{s}}$ the number of sensors.

Reduced order modelling using POD

► Reduced-order solution :

$$\mathbf{u}_R(\mathbf{x},t) = \sum_{r=1}^{N_r} a_r(t) \phi^r(\mathbf{x})$$

avec $N_r << N_{grid}$.

- Base functions \u03c6^r are obtained by Proper Orthogonal Decomposition.
- Reduced order model : POD-Galerkin model

$$\left(\partial_t \mathbf{u}_R + \mathbf{u}_R \cdot \nabla \mathbf{u}_R + \nabla p - \frac{1}{Re} \Delta \mathbf{u}_R, \phi'\right) = \mathbf{0}$$
 is a system of ordinary differential equations.

Proper orthogonal decomposition

► Simulation of Navier-Stokes over [0, *T_{max}*]

 $\Rightarrow \{\mathbf{u}^i(\mathbf{x}) = \mathbf{u}(\mathbf{x},t^i)\}_{i=1..N_t} = \mathsf{snapshots}$

▶ Define L = span{u¹,..., u^{Nt}} Find low-dimensional subspace of L that gives the best approximation of L : Find orthogonal functions {d^r}_{r=1}, with N_r << N_r.

Find orthogonal functions $\{\phi^r\}_{r=1...N_r}$ with $N_r << N_t$ and the coefficients \hat{a}^i_k such that :

$$\sum_{i=1}^{N_t} \left\| \mathbf{u}^i - \sum_{r=1}^{N_r} \hat{\mathbf{a}}_k^i \phi^r \right\|_{L^2(\Omega)}^2 \quad \text{is minimal}$$

- Actuators turned on once the flow is fully developped (t = 0).
- Navier-Stokes simulations with control laws $c^{i}(t)$, $i = 1, N_{c}$
- Each simulation is over a period $[0, T_{max}]$.
 - \Rightarrow solutions at N_t time instants : $\mathbf{u}^i(\mathbf{x}, t^k), k = 1..N_t, i = 1..N_c$
- Definition of snapshots for building a POD basis :

 $\mathbf{w}^{k,i}(\mathbf{x}) = \mathbf{u}^i(\mathbf{x},t^k) - \mathbf{u}_0(\mathbf{x}) - c^i(t^k)\mathbf{u}_c(\mathbf{x})$

- where functions \mathbf{u}_0 and \mathbf{u}_c are chosen such that the snapshots are equal to zero at inflow, outflow, and jet boundaries.
- Build one POD basis $\Phi^k(c^1, \cdots, c^{N_c})$

POD-ROM of flow past a bluff body

We wish the reduced order model to be :

- ► Accurate when integrated with database control law(s)
- Robust to changes in the control laws applied
- > a tool for **Optimization** : to be used to estimate descent directions

Building an accurate ROM

- In Navier-Stokes u(x, t) is replaced by u₀ +c(t)u_c + ∑_{k=1}^N a_k(t)Φ_k(x).
 Projection onto the POD modes leads to a system of ODEs :

$$\begin{cases} \dot{a}_r(t) &= f_r(\mathbf{a}(t), c(t), \widehat{\mathbf{X}}) \\ a_r(0) &= a_r^0 \end{cases} \quad 1 \leq r \leq N_r$$

 $\begin{array}{lll} \text{where}: f_r(\mathbf{a}(t),\!c(t),\widehat{X}) &=& \widehat{A}_r + \widehat{C}_{kr} a_k(t) - \widehat{B}_{ksr} a_k(t) a_s(t) \\ && - \widehat{E}_r \dot{c}(t) - \widehat{F}_r c^2(t) + [\widehat{G}_r - \widehat{H}_{kr} a_k(t)] c(t) \end{array}$

System matrices \widehat{A} , \widehat{B} , \widehat{C} , \widehat{E} , \widehat{F} , \widehat{G} and \widehat{H} depend only on \mathbf{u}_0 , \mathbf{u}_c and the modes Φ_r and their derivatives.

Model Accuracy (2)

These differences are emphasized is the case of feedback control laws :

Calibration

 \rightarrow Adjust certain system matrices so as to minimize the difference between \hat{a}_k and a_k

where $\hat{a}_k(t^n)$ is the the projection of the *n*th snapshot on the *k*th mode.

 \rightarrow Small linear system, independant of \textit{N}_{c} and \textit{N}_{t} :

$$\min_{X} \int_{0}^{T} \sum_{k=1}^{N_{r}} \sum_{i=1}^{N_{r}} \left(\dot{\hat{a}}_{k}^{i}(t) - f_{k}(\hat{\mathbf{a}}^{i}(t), c^{i}(t), X) \right)^{2} dt + \alpha \left\| X - \widehat{X} \right\|^{2}$$

where $\hat{a}^i_k(t^n) = (\mathbf{u}^i(\cdot, t^n), \Phi_k))$ with α a small regularization parameter .

 Image: Control and the second sec

Effect of calibration (1)

Multi-control Models

► Three controls ⇒ Base solutions u¹, u², u³
 ► Seven Databases = Seven POD bases = Seven Models

$$\begin{array}{l} \mathcal{U}_1 = \{u^1\}, \, \mathcal{U}_2 = \{u^2\}, \, \mathcal{U}_3 = \{u^3\} \\ \mathcal{U}_4 = \{u^1, u^2\}, \, \mathcal{U}_5 = \{u^1, u^3\}, \, \mathcal{U}_6 = \{u^2, u^3\} \\ \mathcal{U}_7 = \{u^1, u^2, u^3\} \end{array}$$

• Project base solutions onto POD bases : $\rightarrow a(base \ k, pod \ i)$

ロ シ ・ (き) ・ (き) ・ (き) を う く で) ます (き) や (で) かく (へ Robust Reduced Order Models Of A Wake Controlled By Jets
 15 / 24

Numerical Results for model robustness

日本 - (引き) - (引き) - (日本) - (14) - (

Using the Model for control (1)

Optimization problem

Find control law c(t) to apply on Γ_c such that :

$$c = \operatorname{argmin}_{c} \mathcal{F}(\mathbf{u}) = \operatorname{argmin}_{c} \int_{0}^{T} \mathcal{J}(\mathbf{u}(\cdot, t)) dt$$

is minimal where \boldsymbol{u} is solution of the incompressible N-S equations.

► Degrees of freedom :

- if c is precomputed, c is projected onto a B-spline subspace of dimension N_b and optimization is performed over the B-spline control points.
- ontrol points.
 if *c* is obtained by proportional feedback, optimization is performed over the gain coefficients.

 \rightarrow Optimization performed of a set of N_{opt} control coefficients.

Using the Model for control (2)

Choice of functional

Seek c that solves $\min_{c} \|\mathbf{u} - \bar{\mathbf{u}}\|$ where $\bar{\mathbf{u}}$ is the steady unstable solution.

Using the Model for control (3)

ROM/Optimization algorithm

- step 0 : choose c^0 ,run N-S with c^0 , build POD-ROM model. Set m = 0
- ▶ step 1 (ROM) : Use the model to calculate gradient of the
- functional with respect to the control coefficients of c^m . Use gradient conjugate method to reduce functional, stop when a minimum is reached
 the change in control coefficients is too large
- ▶ step 2 (FULL NS) : Inject new control into N-S and reevaluate functional
 - if functional has evolved as predicted : Form database with new simulation and previous one

 - $m \leftarrow m+1$ \blacktriangleright if not : Form a database including the previous solution(s) and the

new one step 3 : Build POD-ROM model with defined database.

Go to step 1.

・ロシ・イクシ・ミニシ・モラン 芝 うくで Robust Reduced Order Models Of A Wake Controlled By Jets 19 / 24

Using the Model for control (7)

Optimization fter T_{max} ?

Vorticity at time T_{max} after ROM/Optimization on $[0, T_{max}]$.

Conclusions and Future Work

- Accurate reduced-order model of the actuated flow, that is robust to parameter variations
- \blacktriangleright The model has been used to control the flow past a square cylinder, at Re=150
- ► Use the model *online*.
- Use More efficient controls : we are working on a proportional-integral control
- Add the pressure to the model