On Streak Breakdown in Bypass Transition

ROYAL INSTITUTE OF TECHNOLOGY

Philipp Schlatter(a)

Rick de Lange^(b), Luca Brandt^(a), Dan Henningson^(a)

(a) Linné Flow Centre, KTH Mechanics, Sweden
 (b) TU Eindhoven, The Netherlands

SIG-33, Genova, October 16-18

high velocity low velocity contours of λ_2

Philipp Schlatter

t=7150.0

Bypass Transition

moderate to high levels of free-stream turbulence

Asai, Minagawa & Nishioka, JFM (2002)

-10

0

Philipp Schlatte

U

Andersson et al., JFM (2001)

Optimal perturbations used as inflow conditions with different initial amplitudes A_0 in DNS

Brandt & Henningson 2002

12

Secondary instability structures

- Non-linear development of impulse response on spatially evolving streak
- Vortex structures at breakdown similar to breakdown under FST

Two-Mode Model (Zaki&Durbin)

 Simple model of bypass transition starting with interacting continuous spectrum modes

 Low-frequency penetrating mode & high-freq. non-penetrating mode (streak + secondary instability)

• Initial conditions with $v_{
m rms}$ 2%

$$u_{in} = U_B + u_1 e^{i(\pm\beta_1 z - \omega_1 t)} + u_2 e^{i(\pm\beta_2 z - \omega_2 t + \phi)}$$

Ref.: Zaki & Durbin, JFM 2005

Philipp Schlatter

Breakdown in model simulation

- 3D structures show subharmonic sinuous breakdown
- Vortical structures above oscillating low-speed streak

Comparison of secondary instability characteristics

ROYAL INSTITUTE OF TECHNOLOGY

	Sinuous instability	Wavelength	Growthrate	Propagation velocity	Visualization
SKAP NKAP NONST NOLOGY	-	$[\delta^*]$	$[U_{\infty}/\delta^*]$	$[U_{\infty}]$	
	Inviscid instability	10.4	0.035		
	Linear impulse response	10.4	0.032	0.65 -0.8- 0.95	P. P. P.
	Non-linear impulse	11	0.025	0.55 -0.8- 0.95	
	Zaki-Durbin model	20		0.55 -0.85- 0.95	
	KTH simulations	7 - 11		0.85	R.F.
	TU/e experiments	9 - 16	0.01	0.8	36

Philipp Schlatte

u'= \pm 0.1 (red/blue) λ_2 = -0.01 (colors ~y)

Philipp Schlatte

R. S.

 $u'=\pm 0.1$ (red/blue) $\lambda_2 = -0.01$ (colors ~y)

Philipp Schlatte

 1000^{+}

