Qualitative and Quantitative Characterization of a Jet and Vortex Actuator

Hasan GUNES, Sertac CADIRCI Department of Mechanical Engineering Istanbul Technical University

> Francesco BALDANI University of Bologna

Bernd PETERS, Ulrich RIST Institut für Aerodynamik und Gasdynamik Universität Stuttgart

7th ERCOFTAC SIG 33 – FLUBIO Workshop "Open Issues in Transition and Flow Control", Oct. 16-18, 2008, Sta. Margherita, Italy

[1]	Lachowicz, J. T., Yao, C., and Wlezien, R. W., 1999: <i>Flow Field</i> <i>Characterization of a Jet and Vortex Actuator</i> , Experiments in Fluids, Vol. 27, pp. 12-20
[2]	Joslin, R.D., Lachowicz, J. T., and Yao, C., 1998: <i>DNS of Flow</i> <i>Induced by a Multi-Flow</i> , ASME paper Number FEDSM98-5302, ASME Fluid Engineering Meeting
[3]	Koumoutsakos, P., 1995: <i>Simulations of Vortex Generators</i> , Center for Turbulence Research, Annual Research Briefs, pp. 233-240
[4]	Saddoughi, S.G., Koumoutsakos, P., Bradshaw, P., Mansour N.N., 1998: <i>Investigation of on demand vortex generators</i> , Center for Turbulence Research Manuscript No. 171, Stanford University
[5]	Jacobson, S.C. and Reynolds, W.C., 1998: Active control of stream wise vortices and streaks in boundary layers, Journal of Fluid Mechanics 360 : 179-994

Figure 2. Angled jet at wide gap: f=70 Hz, $g_r=3$, $S_a=0.13$, Re=56

Figure 5. Vortex flow: f=190 Hz, $g_r=3$, $S_a=0.13$, Re=146

Figure 3. Jet at wide gap: *f*=70 Hz, *g*,=3, *S*_a=0.19, *Re*=80

Figure 4. Horizontal flow: f=210 Hz, $g_r=3$, S =0.11 Re=1.34

Optical Flow Concept

Brightness change constraint. A common assumption on optical flow is that the <u>image brightness g(x, t)</u> at a point $x = [x, y]^T$ at time *t* should only change because of motion. Thus, the total time derivative,

$$\frac{\mathrm{d}g}{\mathrm{d}t} = \frac{\partial g}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial g}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial g}{\partial t} \tag{10.1}$$

needs to equal zero. With the definitions $f_1 = dx/dt$ and $f_2 = dy/dt$, this directly yields the well-known *motion constraint equation* or brightness change constraint equation, BCCE [6]:

$$(\nabla g)^T \boldsymbol{f} + g_t = 0 \tag{10.2}$$

where $f = [f_1, f_2]^T$ is the optical flow, ∇g defines the spatial gradient, and g_t denotes the partial time derivative $\partial g / \partial t$.

U. Rist et al.: JaVA Actuator

