

J. Pralits 1, T. Bewley 2 and P. Luchini 1 $\!\!\!$

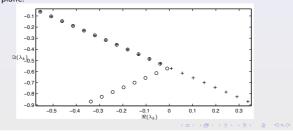
 $^1\text{DIMEC},$ Università di Salerno, Fisciano (SA), Italy $^2\text{Flow}$ Control Lab, Dept. of MAE, UC San Diego, USA

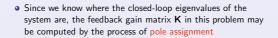
7th ERCOFTAC SIG33 - FLUBIO WORKSHOP ON OPEN ISSUES IN TRANSITION AND FLOW CONTROL

S. Margherita Ligure 16-18 October 2008

Framework • The Salerno group has experience in the computation and use of direct and adjoint modes of large-scale recirculating flows, linearized about unstable equilibria. • The UCSD group has developed an efficient technique to compute minimal-energy stabilizing linear feedback control rules for linear systems. This technique is based solely on the unstable eigenvalues and corresponding left eigenvectors of the linearized open-loop system. Overview If a minimal-energy stabilizing feedback rule $\mathbf{u}=\mathbf{K}\mathbf{x}$ is applied to the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, the eigenvalues of the closed-loop system

the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, the eigenvalues of the closed-loop system $\mathbf{A} + \mathbf{B}\mathbf{K}$ are given by the union of the stable eigenvalues of \mathbf{A} and the reflection of the unstable eigenvalues of \mathbf{A} into the left-half plane.





 Applying this process to the equation governing the dynamics of the system in modal form, and then transforming appropriately, leads to an expression for K requiring only the knowledge of the unstable modes, as shown in the following

The linear optimal control problem

The optimal control probler

The classical full-state-information control problem is formulated as: for the state ${\bf x}$ and the control ${\bf u}$ related via the state equation

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ on 0 < t < T with $\mathbf{x} = \mathbf{x}_0$ at t = 0

find the control \boldsymbol{u} that minimizes the cost function

$$J = \frac{1}{2} \int_0^T [\mathbf{x}^* \mathbf{Q} \mathbf{x} + \mathbf{u}^* \mathbf{R} \mathbf{u}] \, dt.$$

The adjoint variable ${\bf r}$ is introduced as a Lagrange multiplier. The variations of the augmented cost function

$$J = \int_0^T \frac{1}{2} [\mathbf{x}^* \mathbf{Q} \mathbf{x} + \mathbf{u}^* \mathbf{R} \mathbf{u}] + \mathbf{r}^* [\dot{\mathbf{x}} - \mathbf{A} \mathbf{x} - \mathbf{B} \mathbf{u}] dt.$$

gives
$$\dot{\mathbf{r}} = -\mathbf{A}^{H}\mathbf{r} - \mathbf{Q}\mathbf{x}$$
, $\mathbf{u} = -\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{r}$ with $\mathbf{r}(t = T) = 0$

A boundary-value problem

The state and adjoint equations may be written in the combined matrix form

$$\frac{d\mathbf{z}}{dt} = \mathbf{Z}\mathbf{z} \quad \text{where} \quad \mathbf{Z} = \mathbf{Z}_{2n \times 2n} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{H} \\ -\mathbf{Q} & -\mathbf{A}^{H} \end{bmatrix} \quad (1)$$
$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{r} \end{bmatrix}, \quad \text{and} \quad \begin{cases} \mathbf{x} = \mathbf{x}_{0} \text{ at } t = 0, \\ \mathbf{r} = 0 \text{ at } t = T. \end{cases}$$

(**Z** has a Hamiltonian symmetry, such that eigenvalues appear in pairs of equal imaginary and opposite real part.) This linear ODE is a two-point boundary value problem and may be solved assuming there exist a relationship between the state vector $\mathbf{x}(t)$ and adjoint vector $\mathbf{r}(t)$ vi a matrix $\mathbf{X}(T)$ such that $\mathbf{r} = \mathbf{X}\mathbf{x}$, and inserting this solution ansatz into (1) to eliminate \mathbf{r} .

Intro	luction The optimal control	problem Min-energy fee	dback control Resu	ılts	
Т	ne Riccati equation				
	It follows that matrix X or $-\frac{d\mathbf{X}}{dt} = \mathbf{A}^{H}\mathbf{X} + \mathbf{X}\mathbf{A} - \mathbf{X}$ Once X is known, the opt the form of a feedback co	$\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{X} + \mathbf{Q}$ where imal value of \mathbf{u} may the introl rule such that	$\mathbf{X}(t=T)=0.$ (2) en be written in		
	$\mathbf{u} = \mathbf{K}\mathbf{x}$ where $\mathbf{K} = -\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{X}$. Finally, if the system is time invariant and we take the limit that $\mathcal{T} \to \infty$, the matrix \mathbf{X} in (2) may be marched to steady state. This steady state solution for \mathbf{X} satisfies the continuous-time algebraic Riccati equation $0 = \mathbf{A}^{H}\mathbf{X} + \mathbf{X}\mathbf{A} - \mathbf{X}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{X} + \mathbf{Q}$,				
	where additionally ${\boldsymbol{X}}$ is constrained and the second sec	onstrained such that $\mathbf{A} = \mathbf{A}$	BK is stable.	٩٣	

The classical way of solution

A linear time-invariant system can be solved using its eigenvectors. Assume that an eigenvector decomposition of the $2n \times 2n$ matrix **Z** is available such that

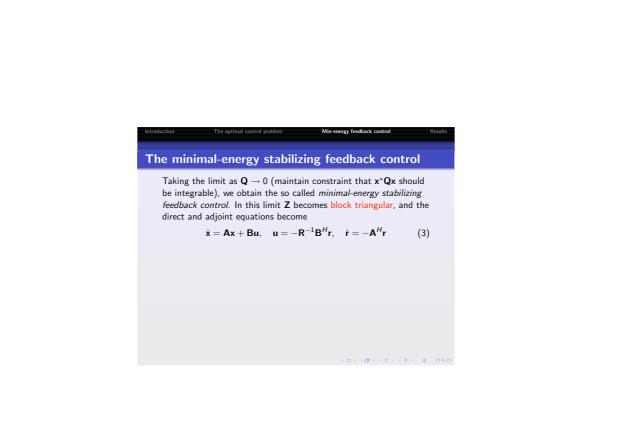
$$\textbf{Z} = \textbf{V} \textbf{\Lambda}_c \textbf{V}^{-1} \quad \text{where} \quad \textbf{V} = \left[\begin{array}{c} \textbf{V}_{11} & \textbf{V}_{12} \\ \textbf{V}_{21} & \textbf{V}_{22} \end{array} \right] \quad \text{and} \quad \textbf{z} = \left[\begin{array}{c} \textbf{x} \\ \textbf{r} \end{array} \right]$$

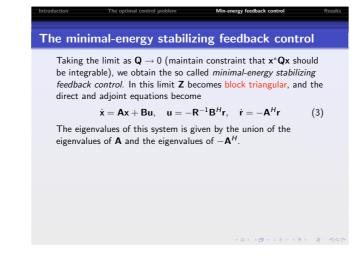
and the eigenvalues of Z appearing in the diagonal matrix Λ_c are enumerated in order of increasing real part. Since

$$\mathbf{z} = \mathbf{V} e^{\mathbf{\Lambda}_c t} \mathbf{V}^{-1} \mathbf{z}_0$$

the solutions **z** that obey the boundary conditions at $t = \infty$ are spanned by the first *n* columns of **V**. The direct (**x**) and adjoint (**r**) parts of the these columns are related as $\mathbf{r} = \mathbf{X}\mathbf{x}$, where

 $\boldsymbol{\mathsf{X}} = \boldsymbol{\mathsf{V}}_{21}\boldsymbol{\mathsf{V}}_{11}^{-1}$





The minimal-energy stabilizing feedback control		
Taking the limit as ${\bm Q} \to 0$ (maintain constraint that ${\bm x}^* {\bm Q} {\bm x}$ should		
be integrable), we obtain the so called minimal-energy stabilizing		
feedback control. In this limit ${f Z}$ becomes block triangular, and the		
direct and adjoint equations become		

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{u} = -\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{r}, \quad \dot{\mathbf{r}} = -\mathbf{A}^{H}\mathbf{r}$ (3)

The eigenvalues of this system is given by the union of the eigenvalues of **A** and the eigenvalues of $-\mathbf{A}^{H}$. Denoting: \mathbf{x}^{i} and λ^{i} the *i*-th right eigenvector and eigenvalue of **A**,

 \mathbf{y}^{i} and $-\lambda^{i*}$ the *i*-th right eigenvector and eigenvalue of $-\mathbf{A}^{H}$ (\mathbf{y}^{i*} is left e.v. of \mathbf{A}), we see that the stable eigenvectors of (3) are of two possible types:

・ ・ ゆ・ ・ ヨ・ ・ ヨ・ ・ ヨ・ つくぐ

The minimal-energy stabilizing feedback control

Taking the limit as $Q \to 0$ (maintain constraint that x^*Qx should be integrable), we obtain the so called *minimal-energy stabilizing feedback control*. In this limit Z becomes block triangular, and the direct and adjoint equations become

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \quad \mathbf{u} = -\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{r}, \quad \dot{\mathbf{r}} = -\mathbf{A}^{H}\mathbf{r}$ (3)

if $\Re(\lambda^i) < 0$ (stable)

The eigenvalues of this system is given by the union of the eigenvalues of ${\bf A}$ and the eigenvalues of $-{\bf A}^H.$ Denoting:

 \mathbf{x}^i and λ^i the *i*-th right eigenvector and eigenvalue of \mathbf{A} , \mathbf{y}^i and $-\lambda^{i*}$ the *i*-th right eigenvector and eigenvalue of $-\mathbf{A}^H$ (\mathbf{y}^{i*} is left e.v. of \mathbf{A}), we see that the stable eigenvectors of (3) are of two possible types:

 $\mathbf{r} = \mathbf{0}, \, \mathbf{x} = \mathbf{x}^i$

The minimal-energy stabilizing feedback control Taking the limit as ${\bm Q} \to 0$ (maintain constraint that ${\bm x}^* {\bm Q} {\bm x}$ should be integrable), we obtain the so called *minimal-energy stabilizing* feedback control. In this limit ${\bf Z}$ becomes block triangular, and the direct and adjoint equations become $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}, \quad \boldsymbol{u} = -\boldsymbol{R}^{-1}\boldsymbol{B}^{H}\boldsymbol{r}, \quad \dot{\boldsymbol{r}} = -\boldsymbol{A}^{H}\boldsymbol{r}$ (3) The eigenvalues of this system is given by the union of the eigenvalues of $\boldsymbol{\mathsf{A}}$ and the eigenvalues of $-\boldsymbol{\mathsf{A}}^H$ Denoting: \mathbf{x}^{i} and $\vec{\lambda}^{i}$ the *i*-th right eigenvector and eigenvalue of \mathbf{A} , \mathbf{y}^i and $-\lambda^{i*}$ the i-th right eigenvector and eigenvalue of $-\mathbf{A}^H$ $(\mathbf{y}^{i*}$ is left e.v. of **A**), we see that the stable eigenvectors of (3) are of two possible types: $\mathbf{r} = \mathbf{0}, \, \mathbf{x} = \mathbf{x}^i$ if $\Re(\lambda^i) < 0$ (stable) $\mathbf{r} = \mathbf{y}^i, \mathbf{x} = (\lambda^{i*} + \mathbf{A})^{-1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^H \mathbf{y}^i$ if $\Re(\lambda^i) > 0$ (unstable)

We now project an arbitrary initial condition \boldsymbol{x}_0 onto these modes,

$$\mathbf{x}_{0} = \sum_{\text{stable}} d_{j} \mathbf{x}^{j} + \sum_{\text{unstable}} e_{j} (\lambda^{j*} + \mathbf{A})^{-1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{H} \mathbf{y}^{j} \qquad (4)$$

Min-energy feedback control

and note that in order to reconstruct ${\bf r}$ we only need the $e_j{\,}'{\bf s},$ because the stable modes have ${\bf r}=0.$

We now project an arbitrary initial condition \boldsymbol{x}_0 onto these modes,
$\mathbf{x}_0 = \sum_{ ext{stable}} d_j \mathbf{x}^j + \sum_{ ext{unstable}} e_j (\lambda^{j*} + \mathbf{A})^{-1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^H \mathbf{y}^j$ (4)
and note that in order to reconstruct r we only need the e_j 's, because the stable modes have $\mathbf{r} = 0$. The coefficients d_j can be eliminated from (4) by projecting the left eigenvectors:
$\mathbf{y}^{i*}\mathbf{x}_0 = \mathbf{y}^{i*}\sum_{unstable} e_j(\lambda^{j*} + \mathbf{A})^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^H\mathbf{y}^j = \sum_{unstable} f_{ij}e_j$
where, since \mathbf{y}^{i*} is also a left eigenvector of $(\lambda^{j*}+\mathbf{A})^{-1}$,
$f_{ij} = \frac{\mathbf{y}^{i*}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{H}\mathbf{y}^{j}}{\lambda^{i} + \lambda^{j*}}$
(D)((B)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)

Ain-energy feedback contr

ction The optimal control problem Min-energy feedback control I

We now project an arbitrary initial condition \mathbf{x}_0 onto these modes,

$$\mathbf{x}_{0} = \sum_{\text{stable}} d_{j} \mathbf{x}^{j} + \sum_{\text{unstable}} e_{j} (\lambda^{j*} + \mathbf{A})^{-1} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{H} \mathbf{y}^{j} \qquad (4)$$

and note that in order to reconstruct **r** we only need the e_j 's, because the stable modes have $\mathbf{r} = 0$. The coefficients d_j can be eliminated from (4) by projecting the left eigenvectors:

$$\mathbf{y}^{i*}\mathbf{x}_0 = \mathbf{y}^{i*}\sum_{\text{unstable}} e_j(\lambda^{j*} + \mathbf{A})^{-1}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^H\mathbf{y}^j = \sum_{\text{unstable}} f_{ij}e_j$$

where, since \mathbf{y}^{i*} is also a left eigenvector of $(\lambda^{j*}+\mathbf{A})^{-1}$,

$$f_{ij} = \frac{\mathbf{y}^{i*}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^H\mathbf{y}^j}{\lambda^i + \lambda^{j*}}$$

Only the unstable eigenvalues and left eigenvectors are needed.

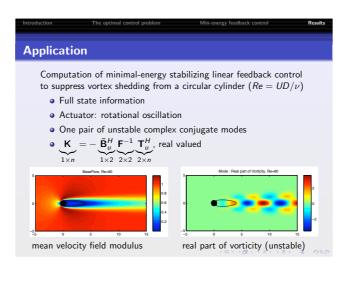
ntroduction The optimal control problem Min-energy feedback control

The main theorem

Summarizing, the solution of the minimal-energy stabilizing control feedback problem can be written in terms of the unstable left eigenvectors only.

Theorem 1. Consider a stabilizable system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ with no pure imaginary open-loop eigenvalues. Determine the unstable eigenvalues and corresponding left eigenvectors of \mathbf{A} such that $\mathbf{T}_u^H \mathbf{A} = \mathbf{\Lambda}_u \mathbf{T}_u^H$ (equivalently, determine the unstable eigenvalues and corresponding right eigenvectors of \mathbf{A}^H such that $\mathbf{A}^H \mathbf{T}_u = \mathbf{T}_u \mathbf{\Lambda}_u^H$). Define $\mathbf{\bar{B}}_u = \mathbf{T}_u^H \mathbf{B}$ and $\mathbf{C} = \mathbf{\bar{B}}_u \mathbf{\bar{B}}_u^H$, and compute a matrix \mathbf{F} with elements $f_{ij} = c_{ij}/(\lambda_i + \lambda_j^*)$. The minimal-energy stabilizing feedback controller is then given by $\mathbf{u} = \mathbf{K}\mathbf{x}$, where $\mathbf{K} = -\mathbf{\bar{B}}_u^H \mathbf{F}^{-1} \mathbf{T}_u^H$.

(1日) (日) (日) (日) (日) (日)

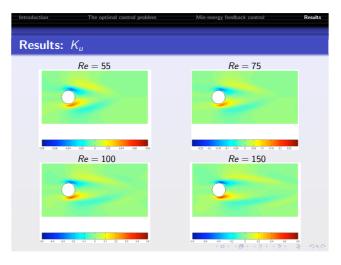


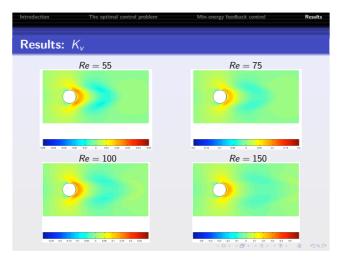
Introduction	The optimal control problem Min-energy feedback control Results
	ound: control using rotational oscillation
Exp. F Exp. F Num. Num.	Aim: reduce C_D Fokumaru & Dimotakis (1991), -20%, $Re = 15000$ Feedback control: Fujisawa & Nakabayashi (2002) -16% (-70% C_L), $Re = 20000$ Fujisawa et al.(2001) "reduction", $Re = 6700$ Optimal control (using adjoints): He et al.(2000) -30 to -60% for $Re = 200 - 1000$ Protas & Styczek (2002) -7% at $Re = 75$, -15% at $Re = 150$ Bergmann et al.(2005) -25% at $Re = 200$ (POD)
	Aim: reduce vortex shedding Feedback control: Protas (2004) reduction, "point vortex model", $Re = 75$ Optimal control (using adjoints): Homescu et al.(2002) reduction, $Re = 60 - 1000$

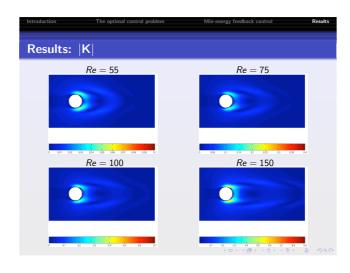
Numerical procedure

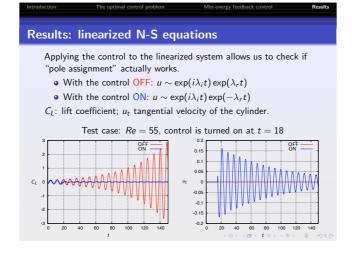
- All equations are discretized using second-order
- finite-differences over a staggered, stretched, Cartesian mesh.An immersed-boundary technique is used to enforce the boundary conditions on the cylinder.
- The system of algebraic equations deriving from the disretization of the nonlinear mean-flow equations, along with their boundary conditions, is solved by a Newton-Raphson procedure.
- The eigenvalue problem is solved by inverse iteration, both right and left eigenvectors are solved simultaneously, as in the work by Giannetti & Luchini¹
- The linear and nonlinear evolution equations are solved using Adams-Bashforth/Crank-Nicholson

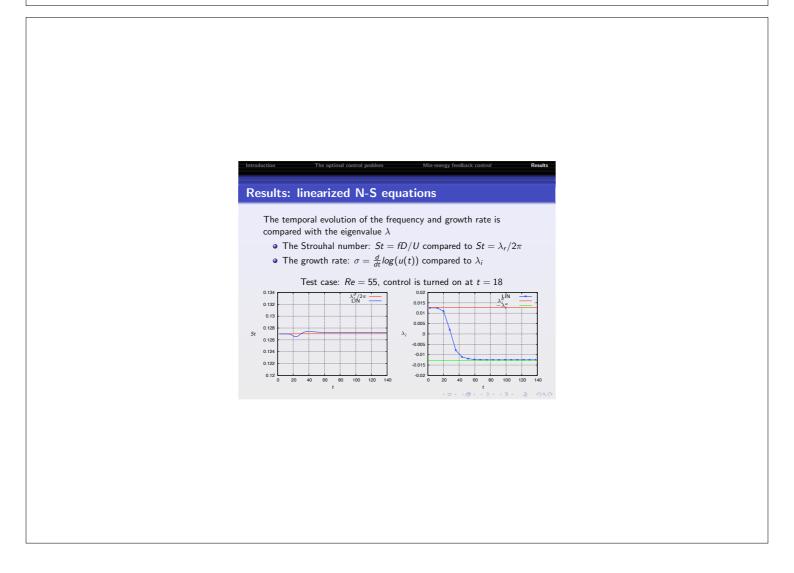
¹Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech. **581**, 167 (2007)



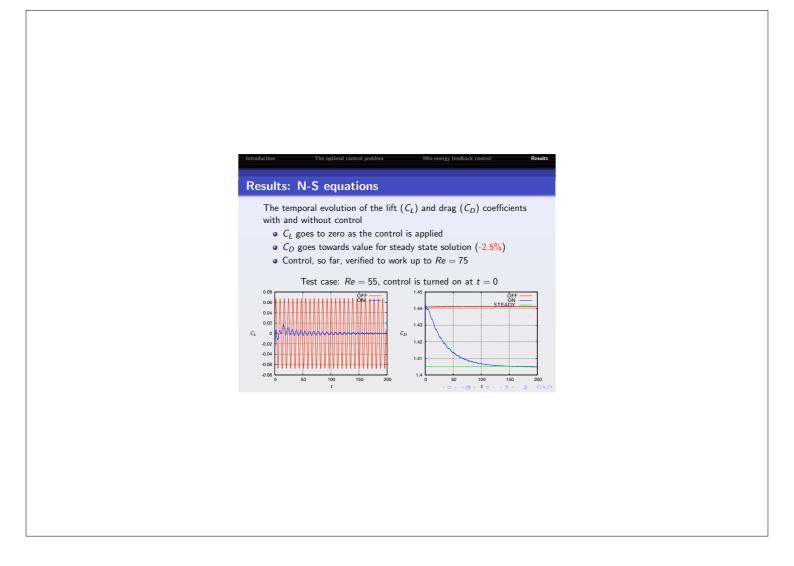








Introduction	The optimal control problem	Min-energy feedback control	Results
Results:	N-S equations		
Voi Screen	rticity: No Control	Vorticity: With Control Screen	
NoContr	ol	WithControl	≡ •)९(२



<section-header><section-header>**Conclusions Outputter of the minimal-energy stabilizing control feedback problem can be written in terms of the unstable left eigenvectors only. A practical algorithm to do so has been devised and tested on the cylinder wake. A no optimal controller using rotational oscillations as actuator has been tested. The "pole assignment" work, and the control works on the full non-linear system (at least up to Re = 75). Drogoing developments A continue to analyse the** *Re* dependence for this type of feedback control. **B continue to analyse the** *Re* dependence for this type of feedback control. **A control to any systems with more unstable modes**.

