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Flow of a continuum
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What is special about stability and turbulence
as control problems?

Traditional control problem Stability & turbulence

Mechanical guidance or in-

dustrial process

Flow of a continuum

O.D.E. P.D.E.

up to 1000 d.o.f. 106 ÷108 d.o.f.

full matrix sparse, structured matrix

⇓ ⇓
Kalman filter, Riccati equation. Reduced-order models, it-

erative eigenvalue methods,

input-output formulation.
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Control tree

Optimal

control:

Noise

reduction
Stabilization

Direct-Adjoint

(finite-horizon)

Linear

Quadratic

Gaussian

Robust

control

Suboptimal control, PID
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The basics

Optimal control:

designing a feedback controller through optimization of a suitable

objective function.

flow

system

controller

external

noise, internal

chaos, design

variation, model

imprecision

objective

(desired

output)

sensorsactuators
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Conclusions

Two flavours

Note:

noise input and actuator input

are different;

desired output and sensor output

are different.

H+n

B

u

x

C

y

LQG optimal control

For the desired output of a Linear system, the statistical

expectation of a Quadratic norm is minimized in the presence of

stochastic Gaussian noise of known correlation function.

Robust control

For the desired output the maximum of a quadratic norm is

minimized over the set of noises of a separately specified input

norm.
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Two flavours

LQG optimal control

For the desired output of a Linear system, the statistical

expectation of a Quadratic norm is minimized in the presence of

stochastic Gaussian noise of known correlation function.
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Static vs. dynamic optimization

Static optimization of a function E(x):

Bracketing methods: bisection, simplex, etc.

Gradient-based methods: find a zero of the gradient. If E is

quadratic, the gradient is a linear system: direct methods,

iterative methods.
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Static vs. dynamic optimization

Static optimization of a function E(x):

Bracketing methods: bisection, simplex, etc.

Gradient-based methods: find a zero of the gradient. If E is

quadratic, the gradient is a linear system: direct methods,

iterative methods.

Dynamic optimization of a functional E [x(t)]:

reduces to above if x(t) is discretized and E is treated as a

function of the vector x of time samples. Adjoint equations provide

the gradient.

However causality is involved: the present state of any dynamical

system and of its physically realizable controller cannot depend on

the future and cannot affect the past.
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Statistics of a static linear system

Given:

a stochastic (vector) variable nj ;

a linear function xi = Hijnj and its adjoint H+
ji = H∗

ij ;

a quadratic form E = x∗
i Qij xj ;

a correlation matrix Nij =
〈

nin∗j
〉

we find:

〈E〉 = 〈x∗
i Qij xj〉 = QijHjhNhk H∗

ik =

= Tr(QHNH+) = Tr(H+QHN) = Tr(NH+QH) = Tr(HNH+Q)
︸ ︷︷ ︸

circular product

Duality: 〈E〉 is left unchanged if Q! N and H! H+
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With control:

system definition becomes

xi = Hij(nj +Bjhuh) noise input (random) + actuator input (given)

uh = Khk yk controller (kernel to be determined)

yk = CklHlmnm sensor output (given)

equivalent to: H⇐ H+HBKCH

〈E〉 = Tr[Q(H+HBKCH)N(H+HBKCH)+]

Quadratic objective ⇒ linear equation for the kernel

1

2

d〈E〉

dK+
= B+H+Q(H+HBKCH)NH+C+ = 0.

K= −(B+H+QHB)−1B+H+QHNH+C+(CHNH+C+)−1

Note: B+H+QHB is what a direct-adjoint computation gives.



Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

Separation principle

K= −(B+H+QHB)−1B+H+Q
︸ ︷︷ ︸

full-information controller

HNH+C+(CHNH+C+)−1

︸ ︷︷ ︸

estimator

flow

system

complete controller (compensator)

full-

information

controller

estimator

external

noise, internal

chaos, design

variation, model

imprecision

objective

(desired

output)

sensorsactuators
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Feedback vs. feedforward

Feedforward: sensors sense input noise

y= CHn

H+n

B

u

x

C

yKfb

CH

y Kff

Feedback: sensors sense controlled output (state)

y= Cx= CH(n+BKy)
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Conversion feedback ↔ feedforward

Kfb = (1+KffCHB)−1Kff

+

+

!

HB

CHB

Kfb

Kff

C
u

n

x

y

w
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Conclusions

Statistics of a discrete dynamical system
(discrete stochastic process)

If the process is discrete in time xi , nj are interpreted as vectors of

time samples,

xi = Hijnj becomes a dynamical system with impulse

response Hij (causality requires Hij = 0 for i < j);

E = x∗
i Qij xj becomes a sum over discrete time;

Nij =
〈

nin∗j
〉

becomes a time autocorrelation.

Remains true that:

〈E〉 = Tr[Q(H+HBKCH)N(H+HBKCH)+]

K= (full-information controller matrix)× (estimator matrix)
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Conclusions

Statistics of a discrete dynamical system
(discrete stochastic process)

If the process is discrete in time xi , nj are interpreted as vectors of

time samples,

xi = Hijnj becomes a dynamical system with impulse

response Hij (causality requires Hij = 0 for i < j);

E = x∗
i Qij xj becomes a sum over discrete time;

Nij =
〈

nin∗j
〉

becomes a time autocorrelation.

Remains true that:

〈E〉 = Tr[Q(H+HBKCH)N(H+HBKCH)+]

K= (full-information controller matrix)× (estimator matrix)

but causality of K must now be enforced.
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The causal inverse

X
def
= Ac.i.B :

{

AijXjk = Bik for i ≥ k
Xik = 0 for i < k

(1)

With this definition:

K= −(B+H+QHB)c.i.B+H+QHNH+C+(CHNH+C+)c.i.
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Conclusions

The causal inverse

X
def
= Ac.i.B :

{

AijXjk = Bik for i ≥ k
Xik = 0 for i < k

(1)

With this definition:

K= −(B+H+QHB)c.i.B+H+QHNH+C+(CHNH+C+)c.i.

The Wiener filter and the Kalman filter are two smart ways to

obtain the (continuous version of) causal inverse in a

computationally efficient way.

Definition (1) is just another linear system, and can always be used

for comparison.
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Statistics of a continuous dynamical system
(continuous stochastic process)

For a time-continuous process the sums become integrals.

x=
R t
−!H(t,")n(")d" becomes a dynamical system with

impulse response H(t,") (where H(t,") = 0 when t < " for

causality);

the quadratic form E =
R !
−! x

∗(t1)Q(t1, t2)x(t2)dt1 dt2;

the correlation matrix N("2,"1) = 〈n("2)n∗("1)〉.

Objective function:

〈E〉=
Z

Tr[Q(t1, t2)H(t2,"2)N("2,"1)H
+("1, t2)]dt1 dt2 d"2 d"1

Separation principle ⇒ Separate control and estimation problems.

Causality ⇒ Wiener or Kalman filter.

If time-invariant: discrete: Hij = Hi−j (Töplitz)

continuous: H(T ,") = H(t − ") (convolution)



Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

You Are Here:

1 Control theory

State representation

Input-output representation

Choice of the objective function

2 Application to stability

Stabilizing a wake

3 Application to Turbulence

The mean linear response

A control-kernel example

4 Conclusions

Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

The concept of state

Definition:

if x is rich enough that its knowledge at a single instant completely

determined the system’s future (for zero input) and subsumes the

system’s past we call x state.

In practice this happens when the description of the system is a

difference or a differential equation in normal form.

xn+1 = Axn +Bun : Hij = A(i−j)

dx/dt = Ax(t)+Bu(t) : H(t − ") = e
(t−")A

y= Cx

This definition carries over to partial differential equations,

provided x is the sufficient set of initial conditions.

Standard control theory is strongly biased towards ordinary

differential equations.
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State representation of a dynamical system

+ estimator

= controller

compensator K

+

+

R

A

B C

u n

x

y
w

Matrix A describes the system (i.e. linearized Navier-Stokes eqs.).

n is a white noise.

Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

The linear optimal control problem and its solution

The classical full-information control problem is formulated as

follows: for the state x and the control u related via the state
equation

ẋ= Ax+Bu on 0 < t < T with x= x0 at t = 0,

find the control u that minimizes the cost function

E =
1

2

Z T

0
[x∗Qx+u∗Ru] dt.

The adjoint variable r is introduced as a Lagrange multiplier.

Taking variations of the augmented cost function

E =
Z T

0

1

2
[x∗Qx+u∗Ru]+ r∗ [ẋ−Ax−Bu] dt.

gives ṙ= −A+r−Qx; Ru= −B+r; r= 0 at t = T .
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The boundary-value problem

The state and adjoint equations may be combined in matrix form

dz

dt
= Zz where Z= Z2n×2n =

[

A −BR−1B+

−Q −A+

]

, (2)

z=

[

x

r

]

, and

{

x= x0 at t = 0,

r= 0 at t = T .

(Z has a Hamiltonian symmetry, such that eigenvalues appear in

pairs of equal imaginary and opposite real part.)

This linear ODE is a two-point boundary value problem. It may be

transformed into an initial-value problem by assuming there exists

a relationship between the state vector x(t) and adjoint vector r(t)
via a matrix X(t) such that r= Xx, and inserting this solution

ansatz into (2) to eliminate r.
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Conclusions

The Riccati equation

It follows that matrix X obeys the differential Riccati equation

−
dX

dt
= A+X+XA−XBR−1B+X+Q where X(T ) = 0. (3)

Once X is known, the optimal value of u may then be written in the

form of a feedback control rule such that

u= Kx where K= −R−1B+X.

Finally, if the system is time invariant and we take the limit that

T → !, the matrix X in (3) may be marched to steady state. This

steady state solution for X satisfies the continuous-time algebraic
Riccati equation

0 = A+X+XA−XBR−1B+X+Q,

where additionally X is constrained such that A+BK is stable.
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How is the Riccati equation solved?
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Conclusions

How is the Riccati equation solved?

by transforming it into a linear eigenvalue problem.

But we already had a linear problem to start with!

As a historical aside, the original transformation

devised by Jacopo Francesco Riccati (1676

- 1754) was meant to solve a nonlinear first-order

ordinary differential equation by transforming

it into a linear second-order one; the above

derivation just applied it the other way round.
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Conclusions

How is the Riccati equation solved?

by transforming it into a linear eigenvalue problem.

But we already had a linear problem to start with!

As a historical aside, the original transformation

devised by Jacopo Francesco Riccati (1676

- 1754) was meant to solve a nonlinear first-order

ordinary differential equation by transforming

it into a linear second-order one; the above

derivation just applied it the other way round.

So, let’s unwind the transformation...
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The boundary-value problem

The state and adjoint equations may be combined in matrix form

dz

dt
= Zz where Z= Z2n×2n =

[

A −BR−1B+

−Q −A+

]

, (2)

z=

[

x

r

]

, and

{

x= x0 at t = 0,

r= 0 at t = T .

This linear ODE is a two-point boundary value problem.
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is in fact a classical eigenvalue problem.

The solution of a linear time-invariant system of O.D.E.’s is

provided by its eigenvectors. Let the eigenvector decomposition of

the 2n×2n matrix Z be

Z= VΛV−1
where V=

[

V11 V12

V21 V22

]

and z=

[

x

r

]

and the eigenvalues of Z appearing in the diagonal matrix Λ are

enumerated in order of increasing real part. Since

z= VeΛtV−1z0

the solutions z that obey the boundary conditions at t = ! are

spanned by the first n columns of V. The direct (x) and adjoint (r)

parts of these columns are related as r= Xx, where

X= V21V
−1
11 .
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Perspective

Our group has experience in the computation and use of

direct and adjoint modes of recirculating flows, linearized

about unstable equilibria.

Recent advances in multigrid numerical methods for this

purpose have been presented at the 5th Symposium on Bluff

Body Wakes and Vortex-Induced Vibrations (Dec 2007).

A technique developed at UCSD, based solely on the

unstable eigenvalues and corresponding left eigenvectors of

the linearized open-loop system, provides the minimal-energy

stabilizing controller and is a perfect match of the above

eigenvalue algorithm. The results of this collaboration will be

presented later in this conference.

A multigrid solver for the first few eigenvalues and

eigenvectors of the full Z matrix is under development.
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Size considerations

State representation

K= −(B+H+QHB)c.i.(B+H+Q)
︸ ︷︷ ︸

full-information controller

(HNH+C+)(CHNH+C+)c.i.

︸ ︷︷ ︸

estimator

When the sizes of actuator u and sensor y are much smaller than

the size of state x, splitting the compensator into two Kalman-filter

problems is no longer convenient.

Input-output representation

K= −(B+H+QHB)c.i.

︸ ︷︷ ︸

2

(B+H+Q)(HNH+C+)
︸ ︷︷ ︸

1

(CHNH+C+)c.i.

︸ ︷︷ ︸

3
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Fourier representation of the optimal controller

C
u

n

x

w

y

+

+

H(#)

K(#)

Problem: to find K (#) such that x∗Qx +u∗Ru is a minimum

when x = Hu +n; y = Cx +w ; u = Ky , w is measurement noise

and n has the statistics of the actual, measured, turbulent-flow

fluctuations.

After Fourier transformation:

space structure is trivial: wavenumbers decouple;

time dynamics is the true difficulty: causality has to be enforced.
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The estimation problem: Wiener versus Kalman

optimal filtering

Kalman (1960): find an instantaneous K such that

(x − x̃)∗Q(x − x̃) is a minimum with dx/dt = Ax +KCx̃ ;

dx̃/dt = Ax̃ +n and n a white gaussian noise.

Wiener (1939): find a causal K (#) such that

(x − x̃)∗Q(x − x̃) is a minimum with x = KC(x̃ +n), where x̃
is a signal and n a noise, both of known but arbitrary (and

unrelated) spectrum.



Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

The textbook Wiener filter

Wiener (1939): find a causal F(#) such that

〈

|s̃− s|2
〉

is a min-

imum, with s̃ = F(#)(s + n), where s is a signal and n a noise,

both of known but arbitrary (and unrelated) spectrum.

Problem: 〈[(n∗ + s∗)F ∗ − s∗][F(s +n)− s]〉 =min.

Correlations: N(") = 〈n(t + ")n∗(t)〉 ;

S(") = 〈s(t + ")s∗(t)〉 ; 〈n(t + ")s∗(t)〉 = 0.

Answer: F(#)(S(#)+N(#))−S(#) = 0

The straightforward solution is F = S/(S +N) but the

corresponding f (t) may be noncausal. To make F causal, the

Wiener-Hopf factorization was invented.

Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

Numerical approaches
to the Wiener-Hopf factorization:

FFT-based Wiener-Hopf factorization: extremely fast

O(Nt logNt ), S.I.S.O.

Levinson algorithm (most widely used in seismology): fast

O(N 2
t ), M.I.M.O.

standard LU decomposition: slow O(N 3
t ), M.I.M.O., foolproof.

Nt : number of time steps in the discretization.
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Equivalent feedforward controller

C

+

y

x
+

u

xQxn

w

H(#)K ′(#)

The feedforward controller K ′ obeys a quadratic optimization

problem; setting its gradient to zero yields a linear system. K is

causal if and only if K ′ is. The closed-loop system is stable if and

only if K ′ is (Youla 1978).
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Wiener optimization of a controller

+

y

x
+

u

n

w

H(#)K ′(#)

C xQx
Problem:

〈

[(n∗C∗ +w∗)K ′∗H∗ +n∗]Q[n

+HK ′(Cn +w)]+

+(n∗C∗ +w∗)K ′∗RK ′(Cn +w)
〉

=min.

Correlations: N = 〈nn∗〉 ; W = 〈ww∗〉 ; 〈nw∗〉 = 0

Answer: (H∗QH + R)K ′(CNC∗ + W ) + H∗QNC∗ = 0

In frequency space the matrices appearing in this linear system of

equations are constant but the resulting K ′ may be noncausal.

Enforcing causality of K ′ is a Wiener-Hopf problem: the relevant

SISO or MIMO methodology can be applied.
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Advantages of Wiener vs. Kalman optimization

H can represent a measured input response,

N can represent a measured correlation, independent of H.

The state autocorrelation N never appears alone, only as

NC∗ = 〈ny∗〉; therefore the algorithm is computationally

efficient:

convolutions: time O(NsNm logNt) and O(NsNa logNt)
Wiener de-convolution: time O(NmNaN 2

t ) (with Levinson

algorithm)

rather than Riccati equation for a matrix of size Ns ×Ns.

Ns: number of states (typically hundreds); Nm: number of measured quantities

(1÷3); Na: number of actuated quantities (1÷3); Nt : number of time steps in

the discretization (also typically hundreds).
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Dissipation
A physically grounded objective function

The quadratic objective function most frequently adopted as the

optimization objective in flow control is the kinetic energy (integral

squared velocity). Skin friction of a real turbulent flow is a

complicated nonquadratic function and cannot directly be adopted

as the optimization objective.

However, there is another quadratic function that gives three

distinct advantages:

Dissipation is a quadratic function that is exactly proportional

to skin friction in the mean unperturbed flow.

Dissipation, in a controlled flow, exactly equals the net energy

balance between the work done by skin friction and the work

done by the controller, and is thus an objective function

directly related to the physical objective.

Dissipation can be modified, and its modification verified,

even in a linear model of turbulence control.
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Motivation

Optimal control of wake instabilities via application of modern

control algorithms (Riccati equation) is intractable because of the

very large number of degrees of freedom deriving from the

discretization of the Navier-Stokes equations.
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Conclusions

Motivation

Optimal control of wake instabilities via application of modern

control algorithms (Riccati equation) is intractable because of the

very large number of degrees of freedom deriving from the

discretization of the Navier-Stokes equations.

An approach based on direct and adjoint eigenvectors makes, at

least in the minimal-control-energy problem, mathematically

rigorous optimal control a reality.
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Application: stabilizing a wake1

1see: J. Pralits, T. Bewley & P. Luchini, later in this session.
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Linear model of a turbulent flow?

V(x ,y ,z, t) = V0(x ,y ,z, t)
︸ ︷︷ ︸

uncontrolled turbulent flow

+ L u
︸︷︷︸

control input
︸ ︷︷ ︸

small perturbation

+

V0(x ,y ,z, t)

V(x ,y ,z, t)
L

u

Linear operator L can represent:

1 Linearized NS problem about the instantaneous flow

(diverges in time!)

2 Linearized NS problem about a mean profile (used in past

optimal-control approaches)

3 Mean linear response of the turbulent flow (present aim)
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Frequency-response representation

C
u

n

x

w

y

+

+

H(#)

K(#)

H(#) is the (numerically) measured mean linear response of the

turbulent flow.

y can be any or all wall stress component, u any or all wall velocity

component.

n is the measured turbulent-flow fluctuation.

Quadratic objective function: x∗Qx +u∗Ru (dissipation)
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The mean linear response2

in frequency domain: H(#) is the response to sinusoidal

forcing of varying angular frequency #

in time domain: g(t) is the impulse response to a Dirac

function $(t).

Linearity requires the perturbations to be smaller than turbulent

fluctuations.

⇒ Conceptual solution: phase-locked averaging (either with

impulsive or sinusoidal forcing) to extract deterministic part of the

signal out of turbulent noise.

Main difficulty: how to obtain a sufficiently good

signal-to-noise (S/N) ratio.

2P. Luchini, M. Quadrio & S. Zuccher, Phys. Fluids 18, 121702(1–4) (2006)
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Our solution: forcing with a random signal

From signal theory: when a white noise is passed through a linear

filter, the correlation between input and output is proportional to

the impulse response of the system.

Roi(t,x ,z) =
Z

g(t − t ′,x − x ′,z − z ′)Rii(t
′,x ′,z ′)dt ′ dx ′

dz ′

If Rii = $(t,x ,z) then Roi = g(t,x ,z).

Turbulent fluctuations will be averaged out just as in

phase-locking.

Forcing power is uniformly distributed (in a statistical sense)

over time and space; amplitude required for linearity can be

as large as for sinusoidal forcing but the whole response is

obtained at once.
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Computational parameters

DNS with b.c. for Vi at one wall drawn out of a (space-time) white

random distribution with given amplitude.

Turbulent channel flow at Re" = 180

Standard domain size: Lx = 4%h, Ly = 2h and Lz = 4.2h

Standard spatial resolution: Nx = 192, Ny = 128 and

Nz = 128

Averaging time ∼ 10−100 times larger than generally

sufficient to collect turbulence statistics.
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Comparison between turbulent and linearized-NS

response

 0.01

 0.1

 1

 10

 0  10  20  30  40  50  60

M
A

X
A

B
S

(H
2
1
)

t+

Ht

Hpt

Hl

Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

The complete response function

Screen



Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

The complete correlation function

Screen

Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

You Are Here:

1 Control theory

State representation

Input-output representation

Choice of the objective function

2 Application to stability

Stabilizing a wake

3 Application to Turbulence

The mean linear response

A control-kernel example

4 Conclusions



Optimal

feedback

control applied

to stability and

turbulence

P. Luchini

Control theory

State representation

Input-output

representation

Choice of the objective

function

Application to

stability

Stabilizing a wake

Application to

Turbulence

The mean linear

response

A control-kernel

example

Conclusions

A control-kernel example3

Sensor y : all three stress components (can be any or all

wall stress components). The longitudinal skin-friction

component is displayed.

Actuator u: wall-normal velocity (can be any or all wall

velocity components).

Objective function: dissipation (can be kinetic energy,

weighted kinetic energy, dissipation).

Control cost R = 0.1; measurement noise W = 0.1.

R and W play a double role as smoothing factors.

3as presented at the 2005 APS-DFD Conference
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A control-kernel example
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A control-kernel example
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Conclusions

Flow problems based on continuum mechanics exhibit a large

number of degrees of freedom, unaffordable by standardized

control algorithms based on the Riccati equation.

For stability problems, a state formulation based on the

direct-adjoint eigenvalue problem opens the way to exact

minimal-energy controllers and to approximate solutions

based on the leading eigenvectors.

For turbulent flow, input-output IMC-Wiener optimization

provides, in a computationally efficient way, the optimal

drag-reducing feedback kernel based on the mean linear

response and on actual turbulence statistics.

Dissipation, a quadratic form, appears to be a more effective

objective function than energy for control purposes.


