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Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsMotivationsThe destabilization of a separated �ow
The primary instability of a �at plate separated �ow is haraterizedby a three-dimensional steady and weakly growing eigenmode.On the other hand, laminar separation bubbles show a highsensitivity to external noise and a strong two-dimensional instabilitymehanism known as ��apping�.We would investigate in a linear and non-linear framework:1 the role of the onvetive modes with respet to the �appingphenomenon;2 the mehanism of transition from onvetive to global instability;3 the in�uene of topologial �ow hanges on the stability behaviour.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsDiret Numerial Simulation2D non-dimensional inompressible Navier-Stokes equations
ut + (u · ▽)u = −▽ p +

1

Re
▽

2
u, (1)

▽ · u = 0,where u = (u, v)T is the veloity vetor, p is the pressure and Re = U∞δ∗

νFrational step method on a staggeredgrid.Spatial disretization: entered seondorder for the linear terms,ompatsixth order for the non-linear terms(Chu & Fan 1999).Temporal disretization:Crank�Niholson for the visous terms,third-order low-storage Runge-Kuttafor the non-linear terms.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsGlobal modelThe instantaneous variables q = (u, v, p)T are onsidered as a superposition ofthe base �ow and of the perturbation q̃ = (ũ, ṽ, p̃)T .Deomposition of the perturbations in a temporal modes basis
q̃(x, y, t) =

Nt∑

k=1

κ0

k q̂k(x, y) exp (−iωkt) , (2)where Nt is the number of modes, q̂k are the eigenvetors, ωk are theomplex eigenmodes, and κ0

k is the initial amplitude of eah mode.Substituting in the NS equations and a linearizing lead to the followingeigenvalue problem
(A − iωkB) q̂k = 0, k = 1, . . . , Nt. (3)whih is disretized with a Chebyshev/Chebyshev spetral methodemploying Nt = 850 modes on a 270 × 50 grid, and it is solved with ashift and invert Arnoldi algorithm using the ARPACK library.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsBase �ow omputation
Re = 200

Re = 225

Base �ows at 150 < Re < 230For subritial Reynoldsnumbers, the base �ow isomputed by DNS.For superritial Reynoldsnumbers, the base �ow isomputed by aontinuation methodombining the DNSapproah with a Newtonsteady-state solver(Tukerman & Barkley,2000).Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsAsymptoti subritial dynamis
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The spetrum isfound to be stable.Three families ofmodes an bedeteted, two ofthem having a verylow growth rate.The eigenvetorsorresponding to themodes on the mostunstable branh, arereminisent of thelassial TS modespredited by a loalapproah.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsAsymptoti superritial dynamis
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Global spectrum at Re=225

The spetrum is unstable. Its struture is similar tothe one at Re = 200, with 7 slightly unstable modeswhose eigenvetors are reminisent of the TS modes.

A marginal seondary separationbegins to be reovered within theprimary one at Re = 225,supporting the hypothesis ofDallmann et al. (1995) thattopologial hanges in the base�ow ould be at the origin of theonset of unsteadiness inseparation bubbles.
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Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsOptimal energy gainThe maximum energy gain at time t over allpossible initial onditions u0 is de�ned as:
G (t) = max

u0 6=0

E (t)

E (0)
. (4)where E (t) = 1

2

∫ Lx

0

∫ Ly

0

(
ũ2 + ṽ2

)
dxdyBy deomposing the perturbation into the eigenmodesbasis (2), it is possible to rewrite it as

G(t) = ||F exp(−itΛ)F−1||2
2

= ||Γ||where Λk,l = δk,lωk and F is the Cholesky fator ofthe energy matrix M of omponents
Mij =

R R `

û∗

i ûj + v̂∗i v̂j

´

dxdy, i, j = 1, . . . , NThe maximum gain at time t and the orresponding u0,are omputed by a singular value deomposition of Γ.
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Maximum energy gain G(t)omputed with N = 600 modesfor Re = 200. The peak reahesa maximum of 109, meaningthat the �ow has an high degreeof non-normality.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsOptimal perturbation at Re = 200
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Streamwise veloity ontours of theoptimal perturbation at t = 0, 200, 4001 The initial energy is onentratedat the upstream part of the bubble.2 The disturbane is onveteddownstream along the separationstreamline amplifying itself untilreahing the reattahment point.3 The perturbation is onvetedthrough the attahed boundarylayer, where it is damped.The high ampli�ation is due to theloal onvetive KH instability of theveloity pro�les within the bubble,leading to a global growth ofperturbations.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsOptimal perturbation at Re = 225
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Streamwise veloity ontours of theoptimal perturbation at
t = 0, 450, 650, 850, 10501 The initial energy is onentratedat the upstream part of the bubble.2 The disturbane is onveteddownstream by the mean �ow as aloalized wave paket.3 A seond wave paket is generateddue to the ampli�ation of thedisturbanes arried bak by thereirulation bubble.A wave paket yle is establishedasymptotiallyCherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsDependene of the optimal energy gain on ReOptimal energy gain at Re = 190, 200, 207, 213, 219, 225.
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1013 The �rst peak value andthe time at whih it oursinrease linearly withrespet to ReSuh a linear inrease ouldbe due to the linearinrease of the size of thebubble with Re, the globalenergy growth being due tothe KH ampli�ation at theseparation streamline.At large times, modulations arereovered in the energy gainurves at all Reynolds numbers.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsFlapping at subritial Reynolds
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The most unstable modes, ω1 and ω2, having omparable ampli�ationrate and being assoiated to similar eigenvetors, interat resulting in alow-frequeny modulation (�apping)
δωr = 0.006 → T = 2π/δωr ≈ 1000Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsFlapping at superritial ReynoldsFor Re ≥ 213, two low-frequenies ould be identi�ed in the energygain urve, due to the presene of three interating unstable modeshaving very similar ampli�ation rate and eigenvetors.
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In Figure, at Re = 225, δωrI
= ωr3

−ωr1
≈ 0.0075, δωrII

= ωr2
−ωr3

≈ 0.02resulting in the periods TI = 2π/δωrI
≈ 850, TII = 2π/δωrII

≈ 300Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsReovering �apping by DNS at di�erent Reynolds numbers
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At Re = 225, DNS reover astable dynamis. Indeed, twomodulations (TI ≈ 1200 and
TII ≈ 350) a�et the energygain urve when a linearbehaviour is established.At Re = 230, DNS reoveran unstable dynamis. By aFourier transform, the two�apping frequeny(ωI ≈ 0.006, ωII ≈ 0.0017)as well as their di�erene arefound. The higherfrequenies orrespond to theunstable global modes of thespetrum.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsDependene of the �apping frequeny with respet to ReIs there any harateristi sale for the �apping frequeny?Let us onsider a Reynolds number based on a �xed length L,
ReL = U∞L/ν, and the orresponding dimensionless frequeny
F = L/δ∗f .
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By the eigenvalue analysis,we �nd F ≈ 1 for any
ReL < 35000 (Re < 213),that is the threshold forthe onset of the seondary�apping frequeny.
→The values of the �appingfrequenies are well onvergedwith respet to grid resolutionand domain lenghtCherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsSaling lawIs there any physial expliation for the �apping phenomenon?Hypothesis : the separation, arring bak the perturbation in the upstreampart of the bubble, ould indue an interation of modes produing the beating.A harateristi sale ould be the time needed by the mean �ow to arrybak a wave paket from the reattahment to the separation point:
F ∝ 1/tL ∝ Ub/Lb

Lb being the bubble size and Ub the base �ow veloity within the bubble.
Lb and Ub vary linearly with respet to ReL for ReL < 35000 (Re < 213)As long as ReL < 35000,

F2

F1

=
tL1

tL2

=
Ub2

Ub1

Lb1

Lb2

=
ReL2

ReL1

ReL1

ReL2

= 1 (5)on�rming that the �apping frequeny F is onstant with respet to Re.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsRole of topologial hanges in the �apping phenomenon (1)What happens at ReL = 35000?
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Ub and Lb do not vary linearly with ReTopologial hanges appear in the bubbleCould be these events linked?The in�etion of the streamlinesould lead the bubble to split in twosmaller ones, A and B, whih ouldarry bak the perturbations at twodi�erent rates generating two distintmodulations.
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Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsRole of topologial hanges in the �apping phenomenon (2)
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How to validate the hypothesis of bubble splitting?The ratio of the size of bubble A with respetto the size of the bubble B (LB/LA ≈ 2.5) islose to the ratio of the two �appingfrequenies (ωII/ωI ≈ 2.7)For ReL > 35000 the primary beating isgenerated by the part B of the bubble, whihis smaller than the entire bubble, and is ableto arry bak disturbanes in a smaller time,originating a higher primary beating frequeny.More validations need to be arried out,involving bubbles with di�erent aspet ratio orgeometry-indued-separations (generated by abump or a bakward-faing step).Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow



Motivations Numerial tools Linear dynamis Flapping frequeny ConlusionsConlusionsThe onsidered separated �ow beome unstable when a seondarybubble originate within the primary one, supporting the hypothesisof Dallmann et al (1995).For Re < 213, a low-frequeny beating is found within the �ow,whose value is onstant with respet to Re.For Re ≥ 213, when topologial hanges are reovered on the base�ow, a seondary �apping frequeny appears, while the primary oneinreases.A saling law has been developed, based on the assumption thatthe osillations are due to the interation of the main wave paketwith the perturbations arried upstream by the bak�ow, explainingthe previous �ndings.Future works would aim at arry out more validations of suh anhypothesis, for adverse-pressure as well as geometry-indued bubbles.Cherubini, Robinet, De Palma Reovering Flapping Frequeny in a Separated Flow
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