Stochastic approach to the receptivity problem

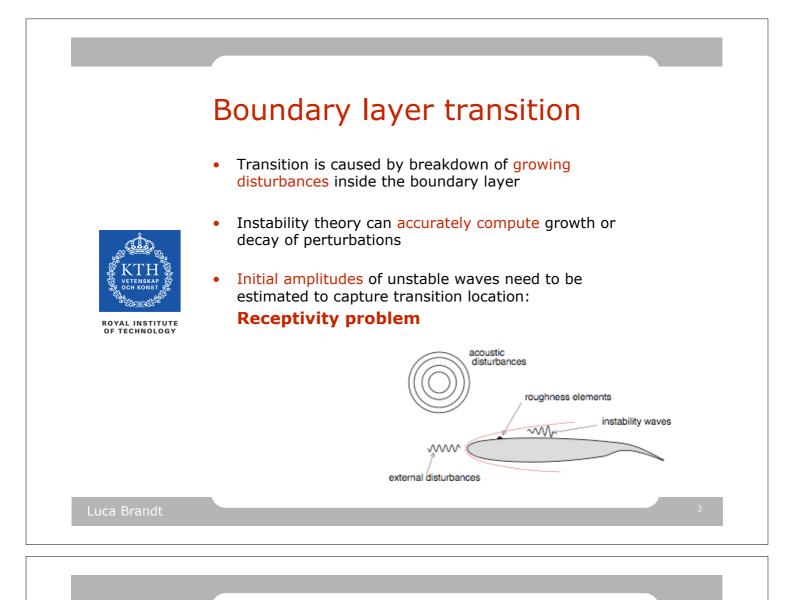
ROYAL INSTITUTE OF TECHNOLOGY

Luca Brandt¹ & Jerome Hoepffner^{2,3}

 ¹ Linné Flow Centre, KTH Mechanics, Stockholm, Sweden
 ² Department of Mechanical Engineering, Keio University, Tokyo, Japan
 ³ IJLRDA, Université Pierre et Marie Curie, Paris, France

- Introduction & Background
 - Receptivity problem
 - Motivation for stochastic approach
- Stochastic initial condition
 - By-pass transition
 - Realizability of optimal disturbances
 - Comparison with optimal IC
- Stochastic forcing
 - Uncorrelated forcing
 - Noise colouring
 - Results for boundary layers
- Conclusions

ROYAL INSTITUTE OF TECHNOLOGY



Stochastic Approach to Receptivity

Motivation

ROYAL INSTITUTE OF TECHNOLOGY

- Predict the disturbance level for initial and external conditions, expected or modeled
- Estimate the realizability of optimal disturbances
- Robustness of deterministic results

Use a stochastic approach assuming a statistic description of external perturbations

Problem formulation

• Linear discrete governing equations

$$\dot{q} = \mathcal{A}q + f u(t), \quad q(x, t = 0) = q_0.$$

ROYAL INSTITUTE OF TECHNOLOGY

- Covariance of the flow defined as
$$P(x,x',t) = \mathrm{cov}(q(x,t),q(x',t)) = \langle qq^H \rangle$$

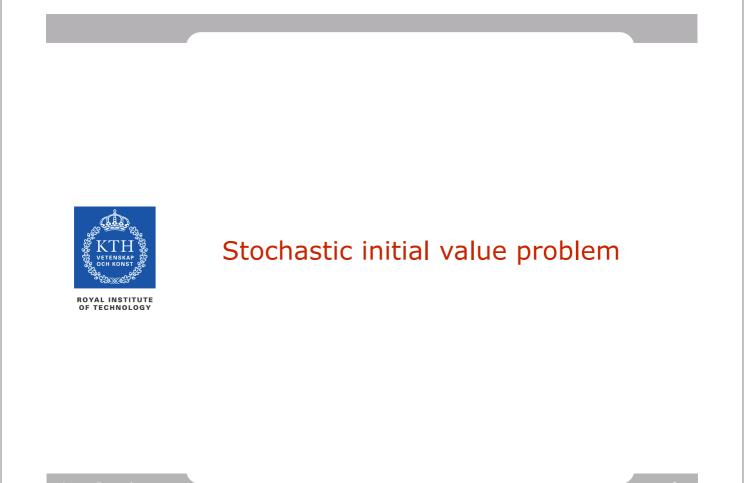
• Lyapunov equation for evolution of ${\boldsymbol{P}}$

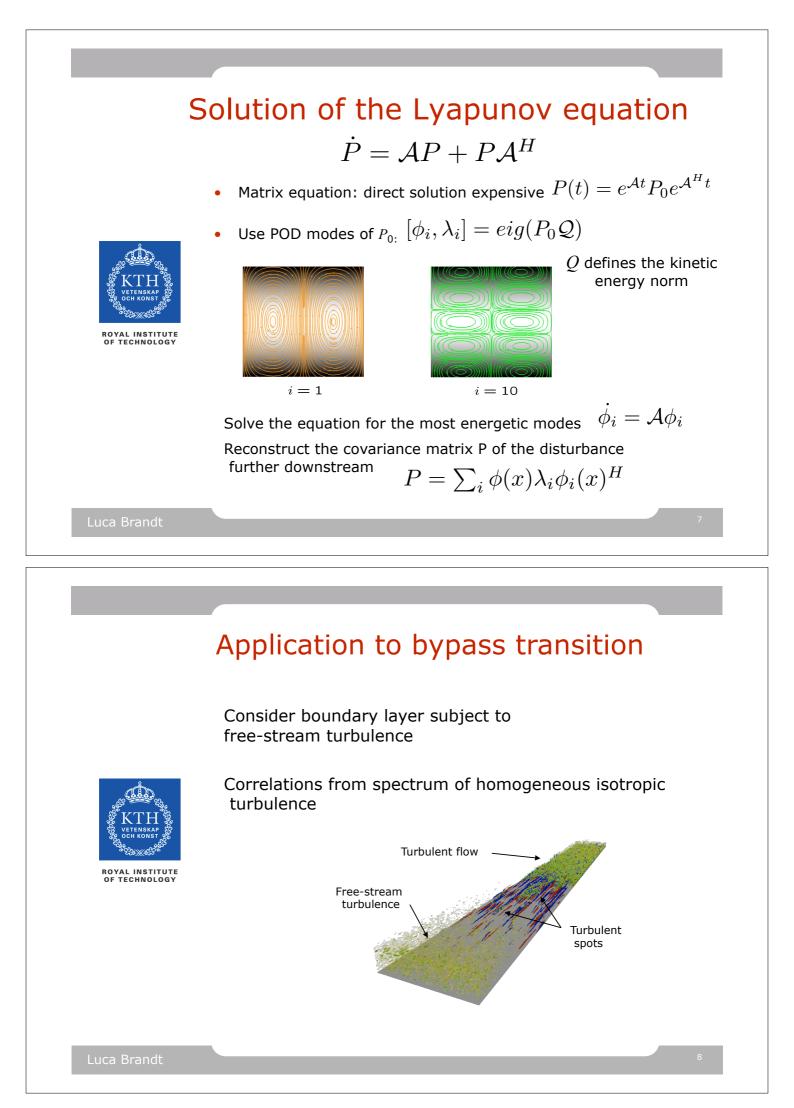
$$\dot{P} = \mathcal{A}P + P\mathcal{A}^H + M, \quad P(0) = P_0$$

Po, the covariance of the initial condition, and M, covariance of the external forcing, are modeled.

$$P_0 = \langle q_0 q_0^H \rangle; \ M = \langle f f^H \rangle; \ \langle u(t_1)u(t_2) \rangle = \delta(t_1 - t_2)$$

_uca Brandt





Disturbance description

Define covariance of initial free-stream perturbation:

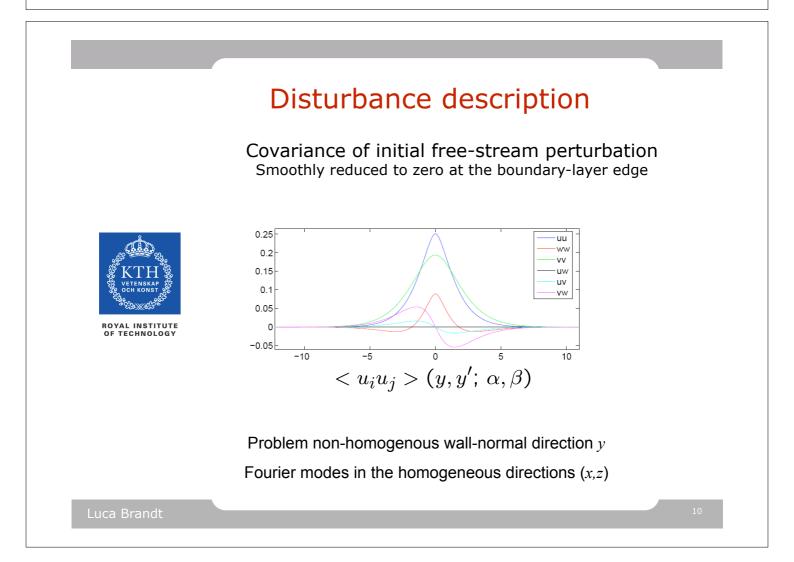
Von Karman spectrum of homogeneous isotropic turbulence

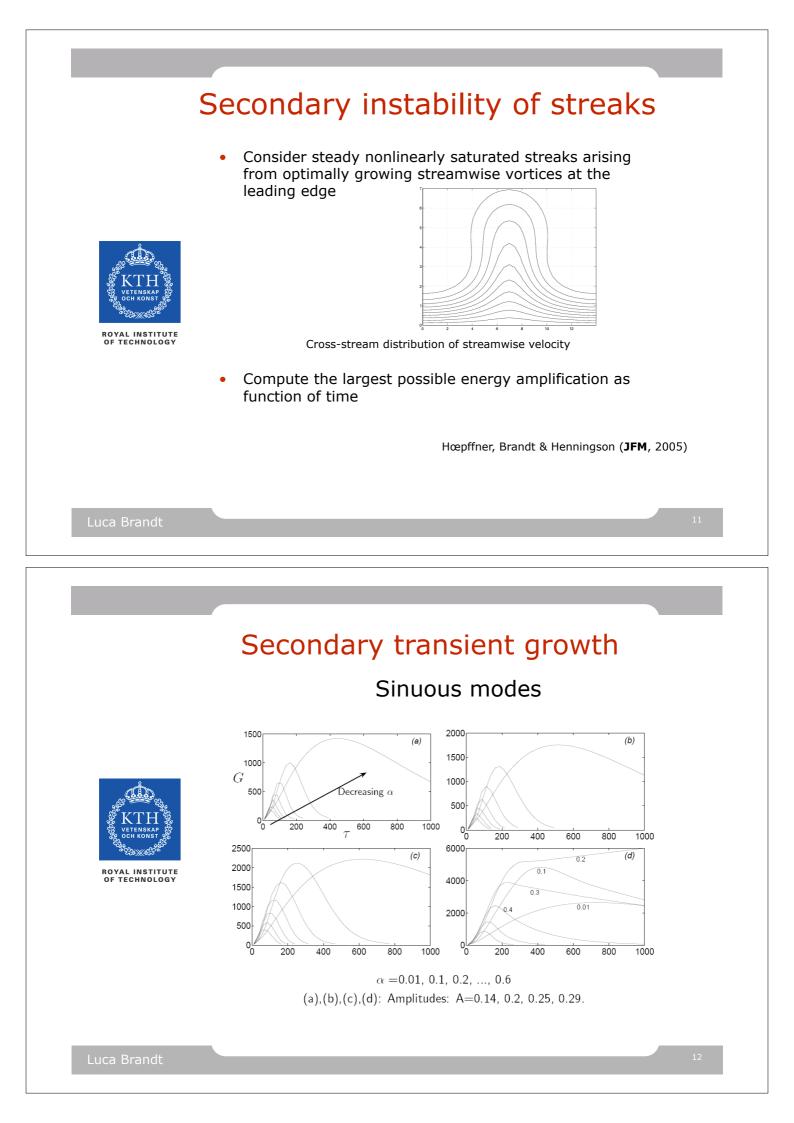
$$E(k) = \frac{2}{3} \frac{a(kL)^4}{(b+(kL)^2)^{17/6}} Lq$$

ROYAL INSTITUTE OF TECHNOLOGY

Fourier transform of two-point velocity correlation

$$< u_i u_j > = \frac{E(k)}{4\pi k^2} \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right)$$







Stochastic forcing

Steady-state Lyapunov equation: $0 = \mathcal{A}P + P\mathcal{A}^H + M$

• Uncorrelated white noise $M = \langle f f^H
angle = \mathbf{I}$

Farrel & Ioannou, Jovanovic & Bamieh

• Spatially correlated white noise in time Hoepffner et al, Chevalier et al

Colored noise

Luca Brandt



Stochastic forcing

Steady-state Lyapunov equation: $0 = \mathcal{A}P + P\mathcal{A}^H + M$

• Uncorrelated white noise $M = \langle f f^H
angle = \mathbf{I}$

Farrel & Ioannou, Jovanovic & Bamieh

• Spatially correlated white noise in time Hoepffner et al, Chevalier et al

Colored noise

_uca Brandt

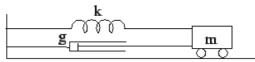
Stochastic time-correlated noise

Lyapunov equation assumes white noise

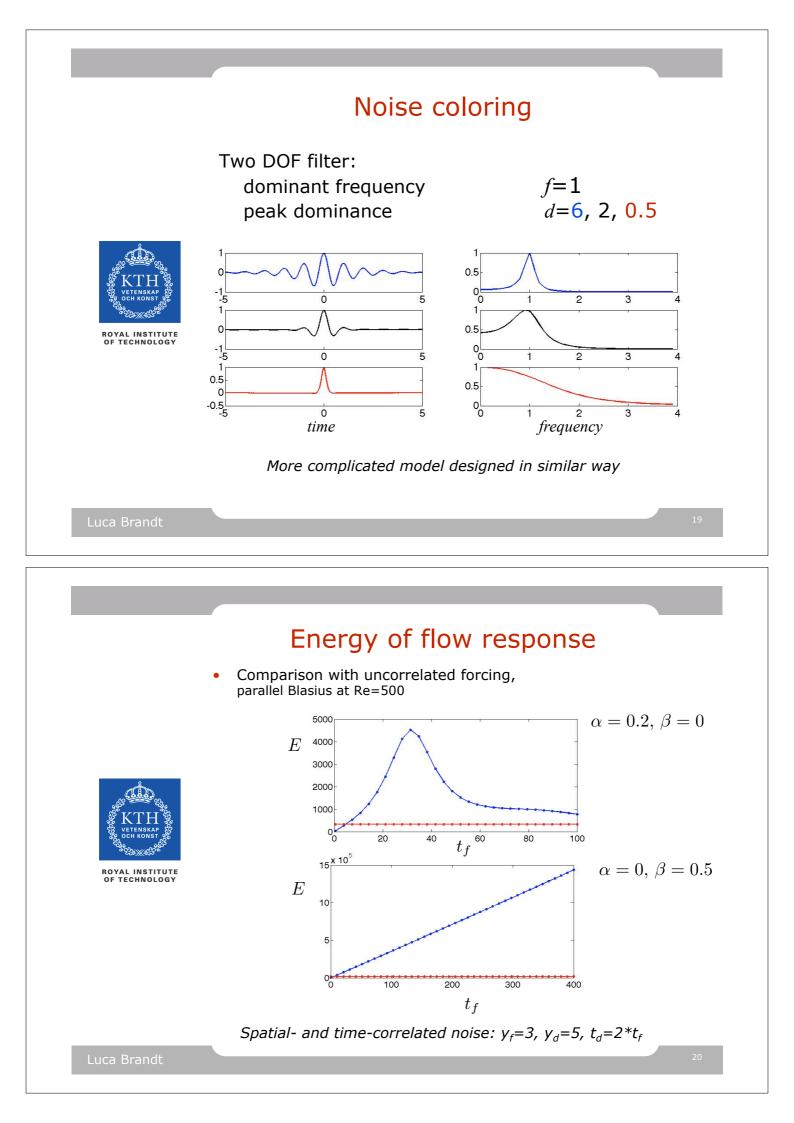
$$\begin{pmatrix} \dot{q} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \mathcal{A} & f \\ 0 & F \end{pmatrix} \begin{pmatrix} q \\ w \end{pmatrix} + \begin{pmatrix} 0 \\ \mathbf{I} \end{pmatrix} u(t)$$

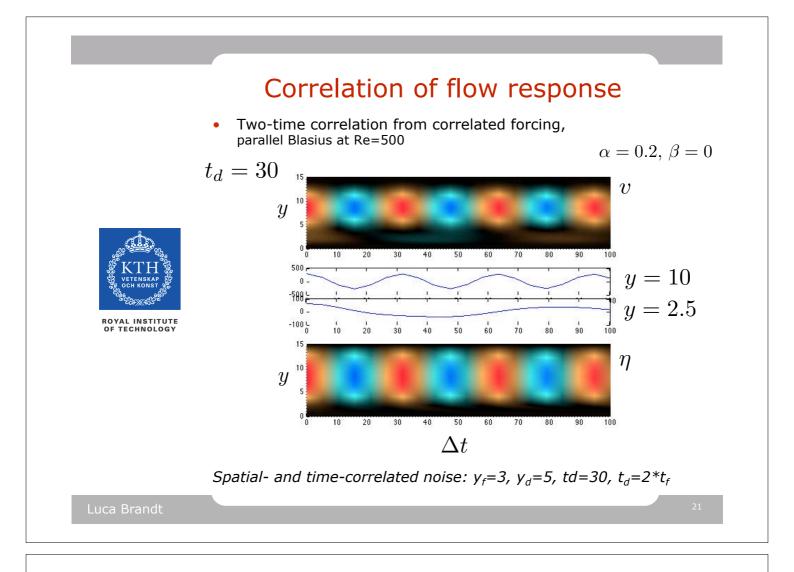
Time-correlated noise obtained by augmented system

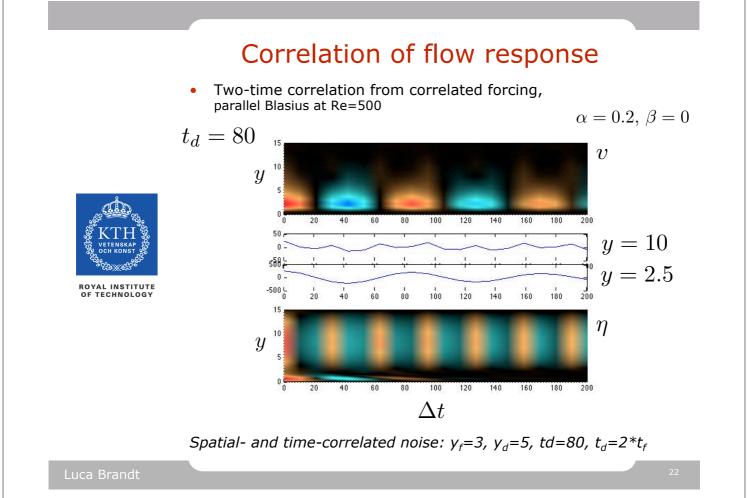
F filter for white noise: determines the forcing features 2×2 system with complex conjugate eigenvalues

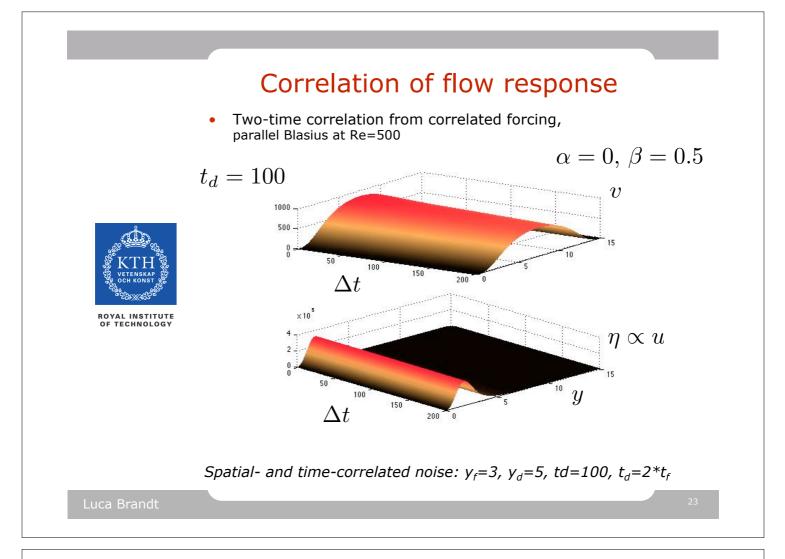


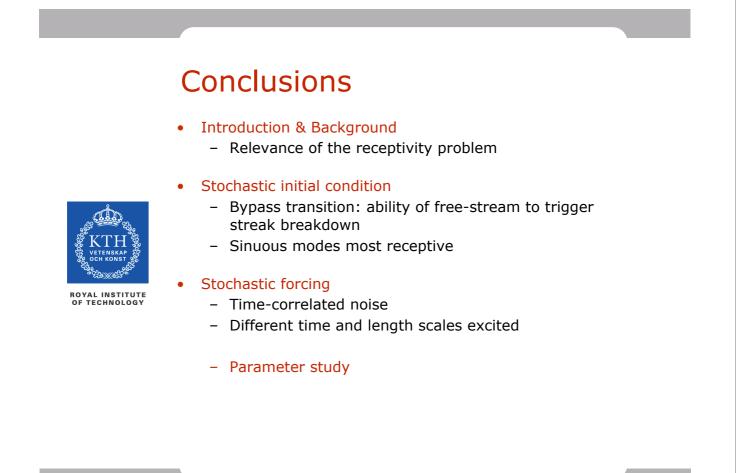
Luca Brandt











<section-header><section-header><section-header><text><text><text><text><text>