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Boundary layer transition 

•! Transition is caused by breakdown of growing 
disturbances inside the boundary layer 

•! Instability theory can accurately compute growth or 
decay of perturbations  

•! Initial amplitudes of unstable waves need to be 
estimated to capture transition location: 

 Receptivity problem 
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Stochastic Approach to Receptivity 

Motivation  

•! Predict the disturbance level for initial and
 external conditions, expected or modeled 

•! Estimate the realizability of optimal disturbances 

•! Robustness of deterministic results 

Use a stochastic approach assuming a statistic
 description of external perturbations 
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•! Linear discrete governing equations 

•! Covariance of the flow defined as 

•! Lyapunov equation for evolution of P 

Problem formulation 

Po, the covariance of the initial condition, and M,

 covariance of the external forcing, are modeled. 

Ṗ = AP + PAH + M, P (0) = P0

P (x, x′, t) = cov(q(x, t), q(x′, t)) = 〈qqH〉

P0 = 〈q0q
H
0 〉; M = 〈ffH〉; 〈u(t1)u(t2)〉 = δ(t1 − t2)

q̇ = Aq + f u(t), q(x, t = 0) = q0.
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Stochastic initial value problem 
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Solution of the Lyapunov equation  

•! Matrix equation: direct solution expensive 

•! Use POD modes of P0:  

Q defines the kinetic 
energy norm 

Solve the equation for the most energetic modes  

Reconstruct the covariance matrix P of the disturbance
 further downstream 

Ṗ = AP + PAH

P (t) = eAtP0eA
Ht

[φi, λi] = eig(P0Q)

φ̇i = Aφi

P =
∑

i φ(x)λiφi(x)H
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Application to bypass transition 

Consider boundary layer subject to  
free-stream turbulence 

Correlations from spectrum of homogeneous isotropic
 turbulence 

Turbulent
 spots 

Free-stream
 turbulence 

Turbulent flow 
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Disturbance description 

Define covariance of initial free-stream perturbation: 

Von Karman spectrum of homogeneous isotropic turbulence 

Fourier transform of two-point velocity correlation 
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Disturbance description 

Covariance of initial free-stream perturbation 
Smoothly reduced to zero at the boundary-layer edge 

Problem non-homogenous wall-normal direction y 

Fourier modes in the homogeneous directions (x,z) 
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Secondary instability of streaks 

•! Consider steady nonlinearly saturated streaks arising 
from optimally growing streamwise vortices at the 
leading edge 

•! Compute the largest possible energy amplification as 
function of time  

Cross-stream distribution of streamwise velocity 

Hœpffner, Brandt & Henningson (JFM, 2005) 
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Secondary transient growth 

Sinuous modes 
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Response to stochastic initial 
conditions  

Stochastic noise in the free stream 

Maximum possible growth  

Antisymmetric
 waves 

Symmetric modes 

Hœpffner & Brandt (Phys Fluid, 2008) 
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Stochastic forcing 
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Steady-state Lyapunov equation: 

•! Uncorrelated white noise  

Farrel & Ioannou, Jovanovic & Bamieh 

•! Spatially correlated white noise in time  
 Hoepffner et al, Chevalier et al  

•! Colored noise 

Stochastic forcing 

0 = AP + PAH + M

M = 〈ffH〉 = I

16!Luca Brandt 

Stochastic uncorrelated forcing 

Component-wise analysis (Jovanovic & Bamieh 2005) 
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Steady-state Lyapunov equation: 

•! Uncorrelated white noise  

Farrel & Ioannou, Jovanovic & Bamieh 

•! Spatially correlated white noise in time  
 Hoepffner et al, Chevalier et al  

•! Colored noise 

Stochastic forcing 

0 = AP + PAH + M

M = 〈ffH〉 = I
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Lyapunov equation assumes white noise  

Stochastic time-correlated noise 

Time-correlated noise obtained by augmented system 

F filter for white noise: determines the forcing features 

(
q̇
ẇ

)
=

(
A f
0 F

) (
q
w

)
+

(
0
I

)
u(t)

2 x 2 system with complex conjugate eigenvalues 
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Two DOF filter:  

dominant frequency   f=1  

peak dominance    d=6, 2, 0.5 

Noise coloring  

More complicated model designed in similar way 

time frequency 
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Energy of flow response 

Spatial- and time-correlated noise: yf=3, yd=5, td=2*tf  

•! Comparison with uncorrelated forcing,  
parallel Blasius at Re=500 

α = 0.2, β = 0

α = 0, β = 0.5

E

tf

E

tf
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Correlation of flow response 

Spatial- and time-correlated noise: yf=3, yd=5, td=30, td=2*tf  

•! Two-time correlation from correlated forcing,  
parallel Blasius at Re=500 

α = 0.2, β = 0

v

η

y = 10
y = 2.5

∆t

td = 30
y

y
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Correlation of flow response 

Spatial- and time-correlated noise: yf=3, yd=5, td=80, td=2*tf  

•! Two-time correlation from correlated forcing,  
parallel Blasius at Re=500 

α = 0.2, β = 0

v

η

y = 10
y = 2.5

∆t

td = 80
y

y
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Correlation of flow response 

Spatial- and time-correlated noise: yf=3, yd=5, td=100, td=2*tf  

•! Two-time correlation from correlated forcing,  
parallel Blasius at Re=500 

v

∆t

td = 100

y
∆t

η ∝ u

α = 0, β = 0.5

24!Luca Brandt 

Conclusions 

•! Introduction & Background 

–! Relevance of the receptivity problem 

•! Stochastic initial condition 

–! Bypass transition: ability of free-stream to trigger 
streak breakdown 

–! Sinuous modes most receptive 

•! Stochastic forcing 

–! Time-correlated noise 

–! Different time and length scales excited 

–! Parameter study 
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FLOW Graduate School 

•! Summer school on FLOW Control, June 29-July 3 2008 
(week after IUTAM Symposium Laminar-Turbulent Transition) 

Optimal control, Feedback Control, Model Reduction,   
Numerical Methods, Applications!

!Invited lecturers: 

 Clancy Rowley, Peter Schmid, Bernd Noack 


