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Introduction

@ Technological applications:
@ Wing body junctions.
@ Roots of blades.
@ Side walls in wind tunnels.

@ Many interrogations remain:

o Discrepancies remain between theories

and experiments ref 1, ref 2.
@ Modification of the Tollmien-Schlichting

mechanism ?
@ New mechanism associated with the

corner flow ?
@ Necessity to develop stability tools for 3D
flows.

B M. Zamir.

Similarity and stability of the laminar boundary layer in a streamwise corner.
Proc. R. Soc. Lond., 377:269-288, 1981

B S.J. Parker and S. Balachandar.
Viscous and Inviscid Instabilities of Flow Along a Streamwise Corner.
Theoret. Comput. Fluid Dynamics, 13:231-270, 1999
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Base Flow Self similar solution

@ 3D boundary layer equations in
self similar form (n, €) [1].

@ Dimensionless velocities
t(n,e)=u

7 (n,€) = vv/2Rex

w (1, €) = wv/2Rey
Re = Uefj/v, 1) = 611/2/1.7208

B S.G. Rubin.

Incompressible flow along a corner.
J. Fluid Mech., 26:97-110, 1966

B S.G. Rubin and B. Grossman.
Viscous flow along a corner: numerical solution of the corner layer equations.
Q. Appl. Math., 29:169-186, 1971.
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Base Flow Se n n

s and results

@ Elliptical form
$=ni—7v
V=€l —W

0 =0¢/0n — OY/0e

@ Poisson-like equations system.
V2 = —8i/On¢ — Ot /der)p
V2p = 20i/dn — 80/ de
V) = 2001/8e + 80 /dn
V20 = —06/on¢—
90/0e + 211 (0 — 2001/ Oe + 292 )

@ BC: Asymptotic matching solutions

@ Spectral discretization:
Chebyshev/Chebyshev. Symmetry
conditions along the bissector s.

@ Large non linear system: NEWTON
NITSOL solver.
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Base Flow
Numerical methods and results

@ Elliptical form
¢=nu—Vv
V=€l —W

0 =0¢/0n — OY/0e

@ Poisson-like equations system.
V2 = —8i/On¢ — Ot /der)p
V2p = 20i/dn — 80/ de
V) = 2001/8e + 80 /dn
V20 = —00/ond—
90 /ey + 21 (0 — 210/ de + 2€5E)

@ BC: Asymptotic matching solutions

@ Spectral discretization:
Chebyshev/Chebyshev. Symmetry
conditions along the bissector s.

@ Large non linear system: NEWTON
NITSOL solver.
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Base Flow S n

s and results

@ Elliptical form

Q=ni—7 40
V=€l —W 22
0 = 9¢/dn — 0y /de o 12
0.6
@ Poisson-like equations system. 86
V2 = —8i/On¢ — Ot /der)p 0 t
V2p = 20i/dn — 80/ de
V24 = 201i/de + 96/ o
V20 = —06/on¢—
00/devs + 201 (0 — 200 /de + 2¢22) b
0 1 1 1
@ BC: Asymptotic matching solutions 0 10 » % o

@ Spectral discretization:
Chebyshev/Chebyshev. Symmetry
conditions along the bissector s.

@ Large non linear system: NEWTON
NITSOL solver.
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Base Flow Self simil n

Numerica s and results

@ Elliptical form

$p=ni—Vv 40
V=€l —W I 2‘2
0 =0¢/0n — OY/0e 30:_ ig
@ Poisson-like equations system. i 8'6
V2 = —8i/On¢ — Ot /der)p ok =
V2p = 20i/dn — 80/ de [
V24 = 201i/de + 96/ ok
V20 = —06/on¢— a
00/0ey + 20 (6—2178&/66—!—26%‘7) -
€ L e ——
0
@ BC: Asymptotic matching solutions 0 10 ? % “0
@ Spectral discretization: Strong three dimensionality =
Chebyshev/Chebyshev. Symmetry 3D Stability.

conditions along the bissector s.

@ Large non linear system: NEWTON
NITSOL solver.
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Base Flow Self similar solution

Numerical methods and results

8 T T T
I L=40, N,=100
bl - - — - L=35,N.=80
40
I 3 w
6 2.4
L 1.8
L 30 1.2
r 0.6
| [ 0
o 4 L 086
- / :20_
2 10k
| @
ol e ———
S R R N S O o 10 20 30 4
0 02 04 06 08 1 &
u

Strong three dimensionality =

Inflectional profile along the bissector 3D Stability.

= inviscid instability.
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@ Instantaneous flow: Q@ = Q + e with € < 1.

@ Slow variation along x:

G0y, z,t) =" [0, 5] (x,y,2,t) = 4(X,y,2) 7%
where X = e,x with e, < 1 and 0F/0x = «

@ Space and time behaviour: £1§ + £20G/9x =0

Initialization: zeroth order in ey

@ Integration along x of 3D PSE equations.
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Linear stability D PSE

@ Spatial theory: from a parallel approach to the PSE applied to 3D Flows.
@ Instantaneous flow: Q@ = Q + e with € < 1.

@ Slow variation along x:

G0y, z,t) =" [0, 5] (x,y,2,t) = 4(X,y,2) 7%
where X = e,x with e, < 1 and 0F/0x = «

@ Space and time behaviour: £1§ + £20G/9x =0
@ Initialization: zeroth order in ex

@ Integration along x of 3D PSE equations.

e
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Linear stability

@ Spatial theory: from a parallel approach to the PSE applied to 3D Flows.
@ Instantaneous flow: Q@ = Q + e with € < 1.

@ Slow variation along x:

G0y, z,t) =" [0, 5] (x,y,2,t) = 4(X,y,2) 7%
where X = e,x with e, < 1 and 0F/0x = «

@ Space and time behaviour: £1§ + £20G/9x =0

Initialization: zeroth order in ey

@ Integration along x of 3D PSE equations.

v-—"
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Linear stability

@ Spatial theory: from a parallel approach to the PSE applied to 3D Flows.
@ Instantaneous flow: Q@ = Q + e with € < 1.
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spatial modes

Linear stability

@ Parallel flow assumption: the stability problem is rewritten as:
[A2 (Re, Q) o® + A1 (Re, Q) a + Ao (Re, Q)] & = Los2p = 0
withaeCand Q e R

@ Spectral discretization: Chebyshev/Chebyshev. Symmetry conditions along s.
@ Companion matrices combined with an Arnoldi Shift/Invert algorithm

@ TS branch even/odd modes. Corner mode (Inviscid nature [1])
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Spatial "
Spectrum and spatial modes

Linear stability 3D PSE
Summar

@ Parallel flow assumption: the stability problem is rewritten as:
[A2 (Re, Q) o® + A1 (Re, Q) a + Ao (Re, Q)] & = Los2p = 0
withaeCand Q e R

@ Spectral discretization: Chebyshev/Chebyshev. Symmetry conditions along s.
@ Companion matrices combined with an Arnoldi Shift/Invert algorithm

@ TS branch even/odd modes. Corner mode (Inviscid nature [1])

35
001
° Corner Mode] 30
" 25
-0.01 Fy n
TS Modk
002 TS Modes] 20
5 >
0.03 15
0.04 10
005 . Re=450, ,=0.08, even 5
* Re=450, ©,=0.08, odd
006 0.14 0.16 0.18 0.2 0.22
a, 0
D S. Balachandar and M.R. Malik.

Inviscid instability of streamwise corner flow. A
J. Fluid mech., 282:187-201, 1995. |U| TS Odd ].
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Spatial "

Spectrum and spatial modes

Linear stability 3D P
Summar
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35
0.01
o Corner Mode] %0
. 25
-0.01 PR
[TS Modes]
-0.02
5 >
-0.03
-0.04
-0.05 . Re=450, ,0.08, even

Re=450, ©,=0.08, odd

006 0.14 0.16 0.18 0.2 0.22

a, 5 10 15 20 25 30 35
D S. Balachandar and M.R. Malik. z
Inviscid instability of streamwise corner flow. A TS
J. Fluid mech., 282:187-201, 1995. ‘U‘ even 1
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Spatial "
Spectrum and spatial modes

Linear stability 3D PSE
Summar
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35
001
° Corner Mode] 30
" 25
-0.01 Fy n
002 [TS Modes] 20
5 >
0.03 . 15
0.04 10
005 B «  Re=450,0,=008, even 5
Re=450, ©,=0.08, odd
006 0.14 0.16 0.18 0.2 0.22
a, 0
D S. Balachandar and M.R. Malik.
Inviscid instability of streamwise corner flow. N TS
J. Fluid mech., 282:187-201, 1995. ’U’ even 2
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Spatial theor
Spectrum and spatial modes

Linear stability 3D PSE
ummar

@ Parallel flow assumption: the stability problem is rewritten as:
[A2 (Re, Q) o® + A1 (Re, Q) a + Ao (Re, Q)] & = Los2p = 0
withaeCand Q e R

@ Spectral discretization: Chebyshev/Chebyshev. Symmetry conditions along s.
@ Companion matrices combined with an Arnoldi Shift/Invert algorithm

@ TS branch even/odd modes. Corner mode (Inviscid nature [1])

35
001
° Corner Mode] 30
e 25
-0.01 Fy n
002 [TS Modes] 20
53 >
0.03 . 15
0.04 10
005 «  Re=450,0,=008, even 5
* Re=450, ©,=0.08, odd
006 0.14 0.16 0.18 0.2 0.22 0
a, 0 5 10 15 20 25 30 35
D S. Balachandar and M.R. Malik. z

Inviscid instability of streamwise corner flow.

J. Fluid mech., 282:187-201, 1995. ’fl’ Corner even
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Spatial theor
Spectrum and spatial modes

Linear stability 3D PSE
ummar
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35

° Corner Mode] 30

25

-0.01 . N
« [TSMod
. [T5 Modes] 20
& >

0.03 15
004 10
-0.05 . Re=450, ©,=0.08, even

Re=450, ©,=0.08, odd

-0.06

0.12 0.16 0.18 0.2 022

a, 5 10 15 20 25 30 35
D S. Balachandar and M.R. Malik. z

Inviscid instability of streamwise corner flow.

J. Fluid mech., 282:187-201, 1995. |\7’ Corner even
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Spatial theor
Spectrum and spatial modes

Linear stability 3D PSE
ummar
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o Corner Mode] %0
. 25
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-0.05 . Re=450, ,0.08, even
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Inviscid instability of streamwise corner flow.

J. Fluid mech., 282:187-201, 1995. ’VAV‘ Corner even
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Spatial "

Spectrum and spatial modes

Linear stability 3D P
Summar

@ Parallel flow assumption: the stability problem is rewritten as:
[A2 (Re, Q) o® + A1 (Re, Q) a + Ao (Re, Q)] & = Los2p = 0
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@ Spectral discretization: Chebyshev/Chebyshev. Symmetry conditions along s.
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@ TS branch even/odd modes. Corner mode (Inviscid nature [1])

0.01
° Corner Mode]

[TS Modes]

35

005 . Re=450, ,=0.08, even
* Re=450, ©,=0.08, odd

006 0.14 0.16 0.18 0.2 0.22

a, ) 35
S. Balachandar and M.R. Malik. z
Inviscid instability of streamwise corner flow. ~ C
J. Fluid mech., 282:187-201, 1995. ‘p‘ orner even
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Linear stability

@ Neutral curve TS
012 ™ TBlasius neutral curve] o Infl £ th d TS
/—QQ\ nfluence of the corner: to damp waves.
0.1 = .
& (TS corner neutrd curve @ Corner mode: marginally stable.
o «
008 @ Similar results as Parker & Balachandar.
0.06 B S.J. Parker and S. Balachandar.
\ Viscous and Inviscid Instabilities of Flow Along a Streamwise
0.04 k\ Corner.
100000 200000 300900 400000 500000 Theoret. Comput. Fluid Dynamics, 13:231-270, 1999.
@ PSE 3D
0 o comerverse @ Backward Euler along x.
T e ose pse
0.001 o Tl e ot L
b~ ) Normal|zat|on condltlon'

00012 :} \\\ \ / / tA*i dz dy =0
6,0002 /, 5

/ 5 @ Non-parallel correction'
10C
-0.004 Os —oj + %
\ s C dx
0005555 300 400 500 600
X B M. S. Broadhurst and S. J. Sherwin.
The Parabolized Stability Equations for 3D-Flows: Implementation
Re=450

and Numerical Stability.
Applied Num. Math., 2006.
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Linear stability

@ Neutral curve TS

0.12 T {Bjasius neutral curve] @ Infl £ th d TS
/;>§\ nfluence of the corner: to damp waves.
01 = .
& (TS corner neutrd curve @ Corner mode: marginally stable.

=3 .« .

o0 @ Similar results as Parker & Balachandar.

0.06 @ S.J. Parker and S. Balachandar.

\ Viscous and Inviscid Instabilities of Flow Along a Streamwise
0.04 k\ Corner.
100000 200000 300900 400000 500000 Theoret. Comput. Fluid Dynamics, 13:231-270, 1999.
@ PSE 3D
0 @ Backward Euler along x.

) Normalization condition'

D ;
e
(i NN t,\*
/i . - =
-0.001 ! + <~ / / dZ dy =0
o e N
-0.002 I H
I “ o Non-parallel correction:
-0.00: /’ !’ N 1 8C
;
0.004 h Y Os —oj + %
} N C ox
-0.00 500

B M. S. Broadhurst and S. J. Sherwin.
The Parabolized Stability Equations for 3D-Flows: Implementation

Re:450 and Numerical Stability.
Applied Num. Math., 2006.
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Linear stability 3D PSE
Summary

ummary:

@ PSE 3D: to analyze convective waves with respect to 3D flows.
@ TS mechanism more stable.

@ The non-parallel effects provide a correction of the spatial amplification rate of the
corner mode: unstable area.

@ Remains less amplified than the TS mode. The theory can not explain the
experimental results.

B A. Bottaro, P. Corbett and P. Luchini.
The effect of base flow variation on flow stability.
J. Fluid Mech, 476:293-302, 2003
I] F. Giannetti and P. Luchini.
Structural sensitivity of the first instability of the cylinder wake.
J. Fluid Mech., 581:167-197, 2007.
B O. Marquet, D. Sipp and L. Jacquin.

Sensitivity analysis and passive control of the cylinder flow.
J. Fluid Mech. in Press.
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Linear stability 3D PSE
Summary

ummary:

@ PSE 3D: to analyze convective waves with respect to 3D flows.
@ TS mechanism more stable.

@ The non-parallel effects provide a correction of the spatial amplification rate of the
corner mode: unstable area.

@ Remains less amplified than the TS mode. The theory can not explain the
experimental results.

Hypothesis:

@ Strong sensitivity to base flow modifications around the corner [1, 2, 3] ?

I] A. Bottaro, P. Corbett and P. Luchini.

The effect of base flow variation on flow stability.
J. Fluid Mech, 476:293-302, 2003

B F. Giannetti and P. Luchini.

Structural sensitivity of the first instability of the cylinder wake.
J. Fluid Mech., 581:167-197, 2007.

D O. Marquet, D. Sipp and L. Jacquin.

Sensitivity analysis and passive control of the cylinder flow.
J. Fluid Mech. in Press.
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Sensitivity & Prospects

@ Small perturbation of the base flow.
— — Ve v+ov
V— V46V — n R R
W W+ 5W W— W+ 0w

Q —6Q

L, rL,
Introducing a scalar product <, >= / / tq""Bq dzdy

(]

<q", Losop (U+6U,§+69,Q+0Q) >=0

L,
0Q = / / 'GyoU dzdy

G, a sensitivity function with respect to 3D flows.
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Sensitivity & Prospects

@ Re =500, v = 0.25.
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Sensitivity & Prospects

@ Re =500, v = 0.25.
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Sensitivity & Prospects

@ Re =500, v = 0.25.
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Sensitivity & Prospects

35

@ Re =500, v = 0.25.

15 20 25 30 35
z

G, Corner mode
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Sensitivity & Prospects

@ Re =500, v = 0.25.

25 30 35

G, Corner mode
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Sensitivity & Prospects

@ Re =500, v = 0.25.

@ Sensitivity functions are
stronger for the corner mode.

@ Most influence on the

eigenvalue in the cross section.

F. Alizard

Corner Stability

25 30

G,, Corner mode

35




Sen ity
Prospects

Sensitivity & Prospects

@ To complete 3D PSE analyses. Critical Reynolds number associated with the
corner mode and comparisons with DNS.

@ Further explore the sensitivity functions with (Re, ).

® Modification of the critical Reynolds number with respect to r quantifying the
deviation of the base flow Q [1] ?

@ Extension of the analysis in compressible regime.

B A. Bottaro, P. Corbett and P. Luchini.

The effect of base flow variation on flow stability.
J. Fluid Mech, 476:293-302, 2003
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