

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



# Grid generation and adaptation in complex geometries

Jerzy Majewski, Jacek Rokicki

Institute of Aeronautics and Applied Mechanics Warsaw University of Technology

May 11, 2011



## **Plan of the Presentation**

#### Introduction

Anisotropic Grid Generation/Adaptation

Anisotropic Error Estimator

**Numerical Results** 

Conclusions

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●



#### **Motivation** Scram Jet in supersonic flow - M = 3.0



Mach number field (after 7 adaptation steps - 50611 nodes)



# $\label{eq:motivation} \begin{array}{l} \mbox{Motivation} \\ \mbox{DLR F6 in transonic flow - } M = 0.76 \; \alpha = 0.5^{\circ} \end{array}$



Mach number field (after 3 adaptation steps - 287915 nodes)

▲□▶▲□▶▲□▶▲□▶ □ のへで



# **Anisotropic Adaptation**



Anisotropic grid after 3 adaptations (6403 grid nodes)



Isotropic grid after 3 adaptations (28078 grid nodes)



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# **Anisotropic Adaptation**



Mach number field calculated on the anisotropic grid (6403 grid nodes)



Mach number field calculated on the isotropic grid (28078 grid nodes)



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# **Anisotropic Adaptation**

- The adaptation is based on regeneration of the grid
- Initial grid is generated for user-specified grid spacing
- Error estimator provides to the generator a *Control Space* which describes the grid spacing
- Grid generator creates a new grid according to the spacing
- The solution from previous iteration of the adaptation is interpolated on the new grid and the solution process is restarted



(日) (日) (日) (日) (日) (日) (日)

# Grid spacing - anisotropic concept

- Grid-spacing is typically defined as a scalar
- Anisotropic adaptation needs additional information on directionality which can be provided by second order symmetric positive definite tensor. Such tensor can be used as a metric tensor:

$$I^2 = \mathbf{e}^T \cdot \mathcal{M} \cdot \mathbf{e}$$

where  $\bm{e}$  is a direction vector and / its length (assuming that  $\mathcal M$  is constant along  $\bm{e})$ 

• Assuming that for computational domain exists a continuous metric tensor field it can form a Riemann space where grid is generated in such a way that edge lengths are of unit length.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Grid spacing - anisotropic concept

- Metric tensor  $\mathcal{M}$  can be interpreted as an ellipse (ellipsoid in 3D)
- Since it is SPD it can be decomposed using eigenvalue problem:

$$\mathcal{M} = \boldsymbol{R} \cdot \begin{bmatrix} \lambda_1 & \boldsymbol{0} \\ \boldsymbol{0} & \lambda_2 \end{bmatrix} \cdot \boldsymbol{R}^{-1} = \boldsymbol{R} \cdot \begin{bmatrix} \frac{1}{h_1^2} & \boldsymbol{0} \\ \boldsymbol{0} & \frac{1}{h_2^2} \end{bmatrix} \cdot \boldsymbol{R}^{-1}$$

• *R* is a matrix which columns define unit directions of ellipse main axes





◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### **Error Estimation - Hessian based**

- Error estimator is based on the interpolation error
- For 2nd order solver the interpolation error is proportional to the Hessian of the current solution:

$$\mathcal{H} = \begin{bmatrix} \frac{\partial^2 \phi}{\partial x^2} & \frac{\partial^2 \phi}{\partial x \partial y} & \frac{\partial^2 \phi}{\partial x \partial z} \\ \frac{\partial^2 \phi}{\partial x \partial y} & \frac{\partial^2 \phi}{\partial y^2} & \frac{\partial^2 \phi}{\partial y \partial z} \\ \frac{\partial^2 \phi}{\partial x \partial z} & \frac{\partial^2 \phi}{\partial y \partial z} & \frac{\partial^2 \phi}{\partial z^2} \end{bmatrix} = \mathbf{R} \cdot \mathbf{\Lambda} \cdot \mathbf{R}^{-1}$$

• The metric field used for generation of the new grid is constructed from the decomposed Hessian:

$$\mathcal{M} = C^{-1} \ |\mathcal{H}| = C^{-1} R \cdot \left[ egin{array}{ccc} |\lambda_1| & 0 & 0 \\ 0 & |\lambda_2| & 0 \\ 0 & 0 & |\lambda_3| \end{array} 
ight] \cdot R^{-1}$$



(日) (日) (日) (日) (日) (日) (日)

#### Error Estimation - Hessian based Hessian reconstruction

Based on Green formula:

$$\widetilde{
abla \phi} = rac{1}{\Omega} \oint_{\partial \Omega} \phi \; \mathbf{n} \; d m{S}$$

- It is done in three steps:
  - Calculate gradient  $\widetilde{\nabla \phi}$
  - Calculate gradient for every component of  $\nabla \phi$  and using those gradients assemble the Hessian
  - Force symmetry condition on the calculated Hessian

ERCOFFAC Spring, Festivel, GDANSK 12.95.2011



WARSAW UNIVERSITY OF TECHNOLOGY

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Error Estimation - Hessian based results for viscous flows



Mach number field for NACA–0012 airfoil (Re=5000) and a grid obtained using anisotropic adaptation with Hessian–based error estimator



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# Error Estimation - Hessian based

viscous flows - laminar boundary layer



Velocity profile for laminar boundary layer (Blasius solution)

Second derivative of the velocity indicates the region refined by Hessian–based estimator



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# **Error Estimation - Gradient based**

- Necessary to improve viscous flow adaptation
- Uses gradient of the magnitude of the fluid velocity:

$$\begin{array}{lll} \phi & = & |\mathbf{u}| \\ \mathcal{M} & = & \nabla \phi \otimes \nabla \phi \end{array}$$

• The metric tensor has following eigenvalues:

$$\Lambda = diag(\nabla \phi \cdot \nabla \phi, 0, 0)$$

The metric tensor is then blended with Hessian-based metric tensor



#### Error Estimation - comparison viscous flow grid examples





#### grid generated using hessian-based approach





grid generated using gradient-based approach



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

**NACA-0012** in laminar flow -  $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$ 

- Steady subsonic 2D flow
- Laminar Navier-Stokes equations
- Solver based on Residual Distribution LDA scheme



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



Initial grid



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



Grid after 1 adaptation step



#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



Grid after 2 adaptation steps



#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



Grid after 3 adaptation steps



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



#### Mach number field (initial grid)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



#### Mach number field (after 1 adaptation step)



#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



#### Mach number field (after 2 adaptation steps)



#### **NACA-0012** in laminar flow - $M = 0.5 \alpha = 2.0^{\circ} Re = 5000$



#### Mach number field (after 3 adaptation steps)



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

**Multi element airfoil L1T2** in turbulent flow -  $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$ 

- Steady subsonic 2D flow
- RANS equations with Spalart-Almaras turbulence model
- Solver based on Residual Distribution LDA scheme (VKI – THOR code)



<ロ> (四) (四) (三) (三) (三) (三)

#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Initial grid



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 1 adaptation step



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 4 adaptation steps



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 6 adaptation steps



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 8 adaptation steps



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$

м 0.920 0.860 0.800 0.740 0.680 0.620 0.560 0.500 0.440 0.380 0.320 0.260 0.200 0.140 0.080 0.020

Mach number field (initial grid)



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$

0.920 0.860 0.800 0.740 0.680 0.620 0.560 0.500 0.440 0.380 0.320 0.260 0.200 0.140 0.080 0.020

#### Mach number field (after 1 adaptation step)



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$

0.920 0.860 0.800 0.740 0.680 0.620 0.560 0.500 0.440 0.380 0.320 0.260 0.200 0.140 0.080 0.020

#### Mach number field (after 4 adaptation steps)



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$

0.920 0.860 0.800 0.740 0.680 0.620 0.560 0.500 0.440 0.380 0.320 0.260 0.200 0.140 0.080 0.020

#### Mach number field (after 6 adaptation steps)



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$

0.920 0.860 0.800 0.740 0.680 0.620 0.560 0.500 0.440 0.380 0.320 0.260 0.200 0.140 0.080 0.020

#### Mach number field (after 8 adaptation steps)



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 8 adaptation steps - wake



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 8 adaptation steps - slat



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 8 adaptation steps slat boundary layer grid



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



Grid after 8 adaptation steps - flap



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ



#### **Multi element airfoil L1T2** in turbulent flow - $M = 0.197 \alpha = 20.18^{\circ} Re = 3.52 \times 10^{6}$

-16 -14 --12 --10 --8 -6 -4 -2 -0.2 0.4 0.6 0.8 12 ò

Cp distribution for all adaptation steps



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

**RAE - 2822** in turbulent flow –  $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$ 

- Steady transonic 2D flow
- RANS equations with Spalart–Almaras turbulence model
- Solver based on Residual Distribution LDA/N scheme (VKI – THOR code)



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Initial grid



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 1 adaptation step



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 3 adaptation steps



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 5 adaptation steps



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 8 adaptation steps



#### **RAE - 2822** in turbulent flow – $M = 0.73 \ \alpha = 3.19^{\circ} \ Re = 6.5x10^{6}$



Grid after 10 adaptation steps



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 13 adaptation steps



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Mach number field (initial grid)



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Mach number field (after 1 adaptation step)



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Mach number field (after 3 adaptation steps)



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Mach number field (after 5 adaptation steps)



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Mach number field (after 8 adaptation steps)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



#### Mach number field (after 10 adaptation steps)



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



#### Mach number field (after 13 adaptation steps)



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 13 adaptation steps details near the stagnation point



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



# Mach number field (after 13 adaptation steps) details near the stagnation point



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



Grid after 13 adaptation steps details near the shock wave foot



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



# Mach number field (after 13 adaptation steps) details near the shock wave foot



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



#### Grid after 13 adaptation steps boundary layer



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



# Mach number field (after 13 adaptation steps) boundary layer



#### **RAE - 2822** in turbulent flow – $M = 0.73 \alpha = 3.19^{\circ} Re = 6.5x10^{6}$



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Conclusions

- Hessian based error estimator without additional components is not sufficient for definition of the boundary layer grid spacing
- Adding the gradient-based component into Hessian-based metric allows for fully automatic adaptation of 2D high Reynolds number flows



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# **Future Work**

- Adaptation for 3D turbulent flows
- 3D volume grid generator coupled with semistructured boundary layer grid generator.
- Improvement of the interpolator used for transferring the solution from the old grid to the new one.
- Improvement of the error estimator.



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Acknowledgments

- The majority of the work presented here were done in frame of the ADIGMA project AST5-CT-2006-030719 in close cooperation with the Von Karman Institute.
- All turbulent calculations were done using THOR code developed in VKI.