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Motivation

e Part of EU-project TELFONA

- Objective is to demonstrate the ability to predict
aircraft performance in flight based on wind tunnel tests
and CFD results

 Need to understand effect of free-stream turbulence

- High levels of free-stream turbulence in wind tunnels

Linné FLOW Centre
KTH Mechanics . .
| - Low levels of free-stream turbulence in free flight

« Receptivity model needed

- Which boundary-layer disturbances will result from the
penetration of external perturbations into the boundary-
layer

David Tempelmann
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Motivation

* As first step to a receptivity model one can ask...
- Which disturbances are most dangerous?

e Optimal disturbances

- Those initial disturbances which are associated with the
maximum energy growth

Linné FLOW Centre

KTH Mechanics * Optimal disturbances could then be used to
determine receptivity coefficients
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Model

* To model the boundary layer of a real wing we use
the Falkner-Skan-Cooke similarity solutions

- Velocity at edge: [J€ = C'z™
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Governing Equations

* We want to monitor growth of disturbances

- Follow the disturbances as they evolve in space

 Starting with the linear, incompressible disturbance
equations derived from Navier-Stokes equations

KTH Mechanics
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e Aim is to derive a parabolic set of equations

David Tempelmann
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Governing Equations
« Scaling needed

streamline !
 Assume disturbances:
- Aligned with streamline

- Periodic in spanwise

- Weakly varying, non-oscillatory
in streamwise direction

Linné FLOW Centre

* EXpress in non-
KTH Mechanics

orthogonal coordinate Uoo
system

 Now disturbances are assumed to be of the form

a’'(§,m,¢) = a(§, ¢) exp(i6n)
q = (u, v, w,p)
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Governing Equations

* Applying a scaling appropriate to the assumptions
made on the disturbances

* Neglecting terms of order higher than Rt‘z‘;1

=» Parabolic set of equations In (5, ur C)

Linné FLOW Centre
KTH Mechanics . . . .
e Transforming back to cartesian coordinates results in

the Parabolised Stability Equations ( a = — tan(yp)g )

e Initial value problem, solved by marching
downstream

* Optimise energy via adjoint-based optimisation

David Tempelmann
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Results

 Validation of 2.5D Code by comparing results for a
Blasius BL and a “swept Blasius BL”

Energy Growth Optimal disturbance at x; = 0.87, p = 0.53
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* Results for Blasius from Levin (2003)
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Results

» Optimal disturbance
of FSC - boundary !
layer with m = 0.1 5 a0l

* X, = 0.005, x; = 0.25 ol
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Optimal disturbance at x; = 0.005, b = 0.54

Downstream response of optimal disturbance at x; = 0.25, B=054
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Results

« Disturbances not exactly aligned with streamline
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Results

« Comparison between the evolving optimal
disturbance and an crossflow mode R = 0.34

Linné FLOW Centr
KTH Mechanics g 2|
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* Excellent agreement
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Conclusions & Outlook

Disturbances are not exactly aligned with the outer streamline

Validation with Blasius / swept Blasius shows perfect
agreement

Optimal disturbance take form of tilted vortices in crossflow
plane

Transforms into crossflow mode when entering supercritical
domain

Parameter studies - different pressure gradients, include non-
stationary disturbances, leading edge, ...

Comparison with DNS

Project onto free stream turbulence

David Tempelmann



