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Nature’s strategy  
Nature is never regular. Lines are 

not straight, surfaces are not 

smooth and the fact that Earth is a 

geoid is only an approximation. 

The degree of irregularity is a 

matter of perspective.  

To observe things from a 

microscopic point of view 

necessarily leads to the 

conclusions above, which 

complicate issues when dealing, 

for instance, with fluid-structure 

interaction phenomena. If we 

imagine to have to simulate the 

flow  over a surface characterized 

by elastic, microstructured 

protrusions, we need to calculate 

the fluid pressure and velocity in 

each interstice between the 

structures, plus the deformation of 

each structure, taking into account 

how fluid and solid interact. How 

convenient would it be to 

transform an irregular surface into 

a homogeneous region ruled by 

modified macroscopic equations, 

without any loss of information relative to the microstructure? This is the scope of the present thesis, where a multiple 

scale approach is adopted to yield macroscopic equations which govern the interaction between a pure fluid region (F) 

and a homogenized, poroelastic medium (H). 
 
An effective set of equations 
A homogenization, multiple scale technique (cf. [1, 2] for a more extensive explanation) is used to obtain the effective 

or macroscopic model. The unknowns are the fluid velocity 𝒖, the pressure 𝑝 and the displacement of the structure 𝒗; 

they must be intended as quantities which vary only over the macroscale, since they are averaged as explained in the 

caption of fig. 2. The effective balance equations on H are: 

 

{

(1 − 𝜗)�̈� = 𝛻 ⋅ [𝓒 ∶ 𝜺(𝒗) − 𝛼𝑰𝑝],                                                                    (1𝑎)

〈𝛻 ⋅  𝜼〉�̇� −  𝛻 ⋅  𝓚 ⋅ 𝛻 𝑝 =  〈𝛻 ⋅ 𝝌〉: 𝜺(�̇�) − 𝜗𝛻 ⋅ 𝒗,̇                               (1𝑏)
〈𝒖〉 −  𝜗 �̇� =  −𝓚 ⋅ 𝛻 𝑝,                                                                                      (1𝑐)

 

 

where 𝓚, 𝓒, 𝜶, 𝜼, 𝝌 are tensors deduced from the solution of problems over V, defined in fig. 2. The porosity 𝜗 is 

defined as the void fraction within V; (1𝑎) is the governing equation for the displacement; (1𝑏) links the fluid pressure 

to the displacement and (1𝑐), a generalization of Darcy’s law, allows to calculate the fluid velocity once 𝑝 and 𝒗 are 

found. As the name of the technique suggests, the mathematical hypotheses on which system (1) is based, are valid only 

in a homogeneous region, “far” from the macroscopic boundaries of the poroelastic domain.                                                                           

Abstract: 
In Nature, fluid-structure interactions are often characterized by separation of scales, due to the presence of 
small-scale roughness or deformable irregularities present on macroscopic surfaces. It is the case, for instance, 
of the scales which cover the wings of the butterflies or the shark’s skin, the barbules which characterize the 
owl’s feathers or the microscopic protrusions present on the surface of lotus’ leaves. A way to bypass the 
complexity of fine-grained numerical simulations is to consider macroscopic approaches which disregard the 
microscopic properties of the structure aside from the presence of effective tensorial properties which results 
from the solution of microscopic problems. This homogenization perspective is taken in the author’s thesis, 
where particular attention is paid also to regimes in which inertia within the pores is not negligible. 

 

 
 
 
 
 
 
 
 

Figure 1: The flight of an owl is considered as a case to illustrate multiscale 

phenomena. A macroscopic dimension (e.g. the wingspan) is compared to the size of 

the barbules of the feathers (𝜇𝑚). The owl’s feathers are microscopically modeled as 

a poroelastic medium. The insets on the left show the feathers at two different scales, 

while on the right there are different visualizations of the flow field near the feathers. 

In the present work microscopic problems are solved to extract effective tensors 

which define the macroscopic behaviour of the flow. 
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Suitable interface conditions are needed to 

couple model (1) with the Navier-Stokes 

equations which apply in the free-fluid region. 

A study of the possible interface conditions has 

been done in [1, 2]; the set of conditions 

appropriate for the poroelastic case are: 

 

{
 

 
〈𝒖〉𝐻 = 𝒖𝐹 ,                                         (2𝑎)

〈𝜮𝐻〉 ⋅ 𝒏 = 𝝈𝐹 ⋅  𝒏,                           (2b) 

(𝒏 ⋅ 𝓚) ⋅ 𝛻 𝑝𝐻 = 
𝒦𝐼

𝑑𝐼
𝑃𝐹−𝐻 ,           (2𝑐)

 

 

where the superscripts F or H denote the region 

we are in. While (2𝑎, 2𝑏) are classical and 

commonly accepted conditions for 𝒖 and 𝒗, [3] 

has shown by DNS the presence of a pressure 

jump. Here the jump is quantified by equation 

(2𝑐) as in [4]: the normal to the interface 

pressure gradient inside H is proportional to the 

pressure jump (P
F-H

) between the F-H interface I, considered as a membrane of 

isotropic permeability 𝒦𝐼  
and thickness 𝑑𝐼.   

 

Large-𝑹𝒆 flow in a canopy 
In order to test if the way to calculate the permeability for 𝑅𝑒 larger than 𝒪(𝜖) 

works reasonably well (the procedure is explained in the inset below), the 

present model has been compared with experiments in [6], where a turbulent 

flow through and near a canopy made of vertical rigid cylinders is simulated. 

Assuming a constant mixing length model [5], we find an analytical form for 

the velocity in the pure fluid region. In the canopy, eq. (1c) is valid (the term 

𝜗 �̇� disappears since the cylinders are rigid). The entire profile can be seen in 

fig. 3, plotted against experimental results. A posteriori evaluation of 𝓚 

(deduced from the measurements of 𝒖 and 𝛻𝑝 by inverting 1𝑐) shows that 

model (3) gives results in acceptable agreement with the literature (cf. figs. 4 

and 5). 

 
Poroelastic coatings  

While the first application presented was a steady case related to 

hydrodynamics, an unsteady application in aerodynamics is proposed next. A 

channel flow, forced by an oscillating pressure gradient, is studied (cf. [1, 8] 

for details). The lower half of the channel is covered by a poroelastic layer of polyurethane foam, whose microstructure 

is represented in fig. 7 together with some components of 𝝌. The disturbances generated by the medium are studied. 

Fig. 8 shows the vortical structures which arise in the interfacial zone and influence a non-negligible part of the fluid 

domain. 

 

 
 
 
 
 
 
 
 

Figure 2: In the present 

problem, two macroscopic 

regions can be identified: a pure 

fluid region and a region 

occupied by a poroelastic 

medium. If the solid skeleton is 

periodically micro-structured, in 

the poroelastic medium we can 

identify an elementary cell 𝑉, 

divided into two phases: the solid 

𝑉𝑆 and the fluid 𝑉𝐹. The 

hypothesis   needed to apply homogenization is that 𝜖 =
𝑙

𝐿
≪ 1, where 𝑙 and 𝐿 are, 

respectively, the characteristic macroscopic and microscopic 

dimensions. This leads us to the definition of an average over 𝑉, 

denoted with 〈⋅〉, thanks to which the unknowns, once averaged, are 

defined on the H domain where there is no distinction between 𝑉𝑆 and 

𝑉𝐹. Different flow regimes can be identified on the basis of 𝑅𝑒 =
𝑈𝑙/𝜈, with 𝜈 the fluid viscosity and 𝑈 the reference macroscale 

velocity. 

 

 

Figure 3: Full profiles of 〈𝑢1〉 for 

four different experiments (using 

the notations in [6]). The symbols 

represent the experiments, the solid 

lines the analytical solution 

computed in [5]. 

  The effective permeability tensor 𝓚  
The effective permeability represents the property of a porous medium to be 

permeated by a fluid. It is a canonical physical quantity postulated in [7]. For 

𝑅𝑒 = 𝑂(𝜖), it is found solving a Stokes problem over 𝑉𝐹. In case of larger 𝑅𝑒, 𝓚 

is not an 

 
an intrinsic property of the medium, but  

depends on the flow regime, so that the Stokes 

problem is forced by a term which depends on 

𝑅𝑒: 

 

 
𝛻 𝑨 − 𝛻2𝑲 = 𝑰 − 𝑅𝑒𝑼 ⋅ 𝛻𝑲 ,

𝛻 ⋅𝑲 = 0,
                       (3) 

(cf. [1] for the mathematical development). The 

macroscopic behavior of 𝓚 = 〈𝑲〉 is 

summarized by figs. 4 and 5. They show that  

𝓚 is 
Figure 4:  𝓚𝟏𝟏 in case of large-

𝑅𝑒, for 𝜗=0.96-0.99. The band is 

determined with eq. (3); the blue 

circles, with respective error bars, 

are deduced by experiments [6].  

Figure 5: 𝓚𝒊𝒊 in case of 

negligible 𝑅𝑒, for 𝜗=0.3-0.9. 

Blue and yellow bullets are the 

solutions of a Stokes problem 

over VF.  

is an increasing function of the porosity and a decreasing function of 𝑅𝑒𝑼, 

respectively. Since 𝑼 is a macroscopic mean velocity in H, an iterative 

procedure, between the macro and microscopic solution, must be performed to 

find 𝑲 (cf. [1]). 
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Conclusions 
The present thesis has focussed on finding effective properties for macroscopic models of flows through anisotropic 

porous and poroelastic media, from the numerical solution of microscopic equations, including the effect of inertia. 

Validation of the coupled problem, including a pure fluid region and a homogenized medium, have been carried out 

comparing results to DNS and to experimental data from the literature. Different kinds of interface conditions have been 

considered, highlighting the pros and cons of each.  
 

Scientific output 
The Ph.D. work has resulted in two journal papers (refs. [2, 5]) and one paper under review (ref. [8]), a conference 

proceeding (AIMETA XXII) and four technical reports for the European project ACP2-GA-2013-334954-PEL-SKIN. 

One more paper (ref. [9]) and two conference proceedings (AIMETA XXI, ETC14) have been published on a related 

topic and a last paper is in the final stages before submission (ref. [10]). The author’s thesis has been awarded the “Best 

Ph.D Thesis” prize in fluid dynamics by the University of Genova. 
 

 

Figure 8: Disturbance velocity (white arrows) and kinetic energy (colors) of the flow  due to the presence of a homogeneous 

medium positioned in the lower half of the channel (for 𝑥3 ∈ (−1,0)). Only the pure fluid region F is shown, for six different 

instants of a periodic cycle. Periodic boundary conditions are enforced along x1. 
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Figure 6: Non-zero components of 𝜶 for 

𝜗=0.3-1. 

Effective quantities related to the solid 
Homogenization gives effective tensors which allow to transfer the microscopic behavior of the structure to the 

macroscopic scale. For the solid model, we solve for a third order tensor 𝝌 and a vector 𝜼, whose description can 

be found in [1, 8]. These quantities allow to define the effective porosity 𝜶, which can be seen as a modified 

porosity because of fluid pressure force: 𝜶 = 𝜗𝑰 + 〈𝑪: 𝜺(𝜼)〉, with 𝑪 the microscopic elasticity tensor determined 

by the type of material we are considering.   The effective  elasticity  tensor  

 

 

𝓒 = 〈𝑪: 𝜺(𝝌)〉 + 〈𝑪〉, 

𝓒 characterizes the 

elastic behavior of the 

solid not only on the 

basis of the material 

but also taking into 

account the 

geometrical shape of 

the structure. Fig. 7 

shows the non-zero 

entries of 𝓒:  

 
 

Figure 7: Entries of 𝓒. On the right, some components 

of 𝝌 over 𝑉𝑆 are shown (|𝝌𝟏𝟏|, |𝝌𝟐𝟐|, |𝝌𝟏𝟐|, |𝝌𝟑𝟑| 
clockwise from top left). 

for varying 𝜗 ∈ (0.3,1) and the chosen shape (right) of the microstructure.  

 

 


