IMPERIAL

Spanwise non-uniform surface temperature distributions for high-speed boundary layer transition control

Dr Paul Bruce, Department of Aeronautics, Imperial College London

ERCOFTAC Autumn Festival, 10 October 2024

With credit to: **Kazuki Ozawa**, **Dr Luca Boscagli** Funding from: Nakajima Foundation, QinetiQ (WSRF task 0105) HPC time on ARCHER2 provided by EPSRC (UKTC)

Contents

Background

Experimental setup and thermal modelling

Prediction and measurement results

Conclusion

Background Hypersonic vehicles

Challenges for hypersonic aircraft, missiles, re-entry vehicles, rockets, etc.

- Significant friction drag and aerodynamic heating on vehicles.
- Improving the agility of vehicles is key to control stability.
- Thermal protection systems are required.

Background Impact on friction and heating

Delay transition to reduce drag and heat transfer

Background Hypersonic transition fundamentals

- Hypersonic transition: five modes [3].
- The second mode, Mack mode, is a dominant instability [1-3].
- Growth of planar acoustic wave.
- Formed in the shape of 2 ropes in the laminar boundary.
- Breakdown, and then transition.

Background Previous transition control research

Paredes et al. (2016)

- > Effect of periodic array of finite amplitude streaks on Mack modes instability
- Linear (quasi-parallel) boundary layer stability studies
- Streaks can delay transition
 - > 2nd (2D) mode is stabilized
 - > 1st (3D) mode destabilized, can limit extent of transition delay

Background Importance of velocity streaks

Streak [4]

Possible to delay the breakdown of the 2nd (Mack) mode by streaks [4, 7]

Velocity streaks generation methods

Challenges

7

- Drag source at off-design conditions
- Lead to early transition when the disturbance is low
- Patch gets damaged under long heating exposure

Background

Generating streaks using non-uniform thermal boundaries

Numerical domain of non-uniform surface temperature boundary conditions

Hypersonic Mach 6 [10]

- A control concept by non-uniform temperature distributions
- DNS to explain the principles behind the concept

Background

Anticipated impact of control on boundary layer instabilities

Background Aims of this research

Using the Imperial College supersonic wind tunnel:

- 1. Evaluation of passive surface temperature distributions using IRT
- 2. Evaluation of velocity streak generation using LDA

- Flat plate configuration
 - Non-uniform spanwise temperature distribution

Prediction and measurement result

Conclusion

Experimental apparatus

- Imperial College supersonic wind tunnel (cold tunnel)
- IRT to measure temperature

Schematic diagram of the Imperial College supersonic wind tunnel

	Freestream condition				
М	$Re(m^{-1})$	$P_{\infty}(\mathrm{Pa})$	$T_{\infty}(\mathbf{K})$	$T_r(\mathbf{K})$	
2.73	3.7×10^{7}	15900	117	274	

Passive control method to generate non-uniform temperature distributions

Heat transfer equation

$$\frac{\partial T}{\partial t} = \frac{\alpha}{\rho c} \nabla^2 T$$
$$= \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

[11] M. F. Ashby, 2017.

Heat transfer generation method at cold tunnel

Heating system

Manufactured prototype copper test article

- 1. An etch primer to enhance the adhesion
- 2. A heat-resistant paint

- Smooth the surface by polishing the paints
- Thickness is 23μ m
- High emissivity (>0.84)

Mounting the plate in the test section

Experimental setup and thermal modelling Infrared thermography (IRT)

- Thin-film gauges and thermocouples prevent heat convection from boundary layer
- IRT provides non-intrusive and high-resolution surface temperature measurements

Detector	Uncooled microbolometer		
Spectral response	7.5 – 14 μm		
Field of view (FOV)	25°		
Resolution	640 x 480		
Frame rate	50 Hz		
Spatial resolution	6 px/mm		

FLIR A655SC

In-situ calibration for temperature fitting

Spatial calibration Steel: Low emissivity 0 mm

D = 5 mm

Identify measurement location

Image captured by IRT

Thermal modelling

Background

Experimental setup and thermal modelling

Prediction and measurement results

Test cases and initial conditions

	Case	Number of measurements	T _{target} [K]	T _{int} [K]	$T_{target} - T_{int}[K]$	Temperature drop [%]
	Case323K	3	323.2	319.5	3.7	7.4
	Case373K	3	373.2	362.1	11.1	11.1
	Case423K	2	423.2	404.6	18.5	12.3
0.12 0.1 0.08 0.06 0.04 0.02	Measu	urement area			t = 0 s	Initial surface temperature
00	0.05	0.1 0.15	0.2 0.25		[m] Z	0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.09 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.00 0.0
ial College London				25		0.06 0.05 0.04 0.02 0.04 0.02 0.04 0.06 0.08 0.1 0.12 0.14 280

Transient temperature at Case323K

Imperial College London

Overlaying experimental measurements & thermal modelling predictions

Transient temperature along centreline at Case373K

Transient temperature at all cases after t = 15 s

Transient temperature along spanwise after 15 s

Transient temperature along spanwise after 15 s

Obvious temperature difference between the strips

Case373K

Case423K

Non-dimensional temperature difference after t=15s

Streak Measurement

Current progress for setting up Laser Doppler Anemometry (LDA)

Imperial College London

Streak Measurement Preliminary results

Background

Experimental setup and thermal modelling

Prediction and measurement results

Conclusion

Conclusion

- Experiment and thermal modelling
- Thermal modelling capturing a qualitative trend of the experiment
- Higher Temperature difference can be achieved by higher initial temperature input
- Temperature gradient becomes high between the insulator and the conductor
- Global temperature distributions can be controlled by material properties and initial temperature
- Ongoing work
- Conduction of Laser Doppler Anemometry (LDA) to quantify velocity for streaks

performance test

IMPERIAL

Spanwise non-uniform surface temperature distributions for high-speed boundary layer transition control

Dr Paul Bruce, Department of Aeronautics, Imperial College London

ERCOFTAC Autumn Festival, 10 October 2024

With credit to: **Kazuki Ozawa**, **Dr Luca Boscagli** Funding from: Nakajima Foundation, QinetiQ (WSRF task 0105) HPC time on ARCHER2 provided by EPSRC (UKTC)