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Background

Challenges for hypersonic aircraft, missiles, re-entry vehicles, rockets, etc.

• Significant friction drag and aerodynamic heating on vehicles.

• Improving the agility of vehicles is key to control stability.

• Thermal protection systems are required.
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Hypersonic vehicles

HERMEUS Co. (2022)

https://www.hermeus.com/ 

JAXA. (2022). Orbital Re-entry Experiment (OREX). 

https://global.jaxa.jp/projects/rockets/orex/index.html

AIR FORCE. (2022). X-51A Waverider

https://www.af.mil/About-Us/Fact-

Sheets/Display/Article/104467/x-51a-waverider/

https://www.hermeus.com/
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Impact on friction and heating

Delay transition to reduce drag and heat transfer

Higher drag and heat flux

𝐶𝑓

2
= 𝑆𝑡

Reynolds analogy

𝑞 = 𝑓(𝑆𝑡, 𝑇𝑏𝑙 , 𝑇𝑤)

Heat flux
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Hypersonic transition fundamentals

Visualization of hypersonic boundary layer transition [2]

Laminar boundary 

layer

Turbulent boundary 

layer

Transition

[1] C. Zhang, Y. Zhu, X. Chen, H. Yuan, J. Wu, S. Chen, C. Lee, and M. Gad-el Hak, 2015.

[2] L. M. Mack, 1984.

[3] S. Laurence, A. Wagner, and K. Hannemann, 2016.

• Hypersonic transition: five modes [3].

• The second mode, Mack mode, is a dominant instability [1-3].

• Growth of planar acoustic wave.

• Formed in the shape of 2 ropes in the laminar boundary. 

• Breakdown, and then transition.
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➢ Effect of periodic array of finite amplitude streaks on Mack modes instability 

➢ Linear (quasi-parallel) boundary layer stability studies

➢ Streaks can delay transition

➢ 2nd (2D) mode is stabilized

➢ 1st (3D) mode destabilized, can limit extent of transition delay

Previous transition control research
Background
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Min=6
Hypersonic flow 

over a cone

Paredes et al. (2016)

mailto:p.bruce@imperial.ac.uk
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Importance of velocity streaks

Vortex Generator [5]

Streak [4]

[4] P. Paredes, M. M. Choudhari, and F. Li, 2016.

[5] P. Paredes, M. M. Choudhari, and F. Li, 2018.

[6] O. Taylor, 2019.

[7] J. Ren, S. Fu, and A. Hanifi, 2016.

[8] P. Balakumar and M. Kegerise, 2016F. Li, 2016.

Velocity streaks generation methods

Possible to delay the 

breakdown of the 2nd (Mack) 

mode by streaks [4, 7]

Challenges

• Drag source at off-design conditions

• Lead to early transition when the disturbance is low

• Patch gets damaged under long heating exposure

›

Roughness element [6, 8]
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[9] J.P. Hickey, K. Younes, M. X. Yao, D. Fan, and J. Mouallem, 2020.

[10] K. Ozawa. C. Xia, G. Rigas and P. Bruce, 2022.

Background
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Generating streaks using non-uniform thermal boundaries

• A control concept by non-uniform temperature distributions

• DNS to explain the principles behind the concept

Streamwise velocity contour

Numerical domain of non-uniform surface 

temperature boundary conditions

Streamline in the YZ plane

Hypersonic Mach 6 [10]Low speed [9]

Lift-up mechanism

›
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• No additional drag

• Working under low disturbance

• No patch damage 

Wall temperature

Stability analysis
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UNCONTROLLED CONTROLLED

Non-uniform wall 

temperature 

Anticipated impact of control on boundary layer instabilities

mailto:p.bruce@imperial.ac.uk
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Aims of this research

Concept

Preliminary design 

Temperature 

performance test

Velocity streak 

performance test

➢ Flat plate configuration

➢ Non-uniform spanwise temperature distribution

Using the Imperial College supersonic wind tunnel:

1. Evaluation of passive surface temperature distributions using IRT

2. Evaluation of velocity streak generation using LDA
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Experimental setup and thermal modelling

• Imperial College supersonic wind tunnel (cold tunnel)

• IRT to measure temperature
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Experimental apparatus

Schematic diagram of the Imperial College supersonic wind tunnel 

Freestream condition

𝑀 𝑅𝑒(m−1) 𝑃∞(Pa) 𝑇∞(K) 𝑇𝑟(K)

2.73 3.7 × 107 15900 117 274
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Passive control method to generate non-uniform temperature 
distributions

1. Dissimilar materials approach: 𝜅

2. Practical arrangement of 

dissimilar materials approach: 𝜅

3. Structural heat flux approach: ∇2𝑇

𝜕𝑇

𝜕𝑡
=

𝛼

𝜌𝑐
∇2𝑇

= 𝜅
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2

𝜅1 ≠ 𝜅2

𝜅1 ≠ 𝜅2

𝜅1 = 𝜅2

∇2𝑇: high

𝜅1 𝜅2

Heat transfer equation
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Design of the flat plate test article

Dissimilar thermal properties
Copper

Steel leading edge

Thermal conductivity plotted

against thermal diffusivity [11]

[11] M. F. Ashby, 2017.

Ceramic(MACOR)
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Heat transfer generation method at cold tunnel

Hypersonic flight condition Current wind tunnel

Ma = 6
𝑇𝑟 = 1500K

Ma = 2.75
𝑇𝑟 = 274K
(~ambient)
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Heating system

Steel leading edge

Heating systemDissimilar thermal 

properties
Ceramic(MACOR)

Copper

Heating elements

Thermocouples
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Manufactured prototype copper test article
1. An etch primer to 

enhance the adhesion

2. A heat-resistant paint

Coating for smooth surface 

and stable measurement

• Smooth the surface by polishing the 

paints

• Thickness is 23𝜇m

• High emissivity (>0.84)

›
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Mounting the plate in the test section

3 degrees incident angle

𝑀2 𝑅𝑒(m−1) 𝑃∞2(Pa) 𝑇∞2(K) 𝑇𝑟2(K)

2.6 3.8 × 107 20000 124 275

Effective freestream condition
2D CFD
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Experimental setup and thermal modelling

• Thin-film gauges and thermocouples prevent heat convection from boundary layer

• IRT provides non-intrusive and high-resolution surface temperature measurements

19

Infrared thermography (IRT)

Detector Uncooled 

microbolometer

Spectral response 7.5 – 14 𝜇m

Field of view (FOV) 25° 

Resolution 640 x 480

Frame rate 50 Hz

Spatial resolution 6 px/mm

FLIR A655SC
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In-situ calibration for temperature fitting

Fitted parameter value

R 14794

B 1500

F 1.0

C 35.7

Coefficient of determination 0.99

RMS error 3.27

𝐼𝐷 = 𝜀
𝑅

𝑒𝐵/𝑇𝑜𝑏𝑗 − 𝐹
+ 1 − 𝜀

𝑅

𝑒𝐵/𝑇𝑎𝑚𝑏 − 𝐹
+ 𝐶

IRTPortable infrared calibrator

(Fluke 9132, 𝜀 = 0.95)

Zinc-Selenide window

𝐼𝐷

PC𝜀, 𝑇𝑜𝑏𝑗

𝑇𝑎𝑚𝑏

›
›

›
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373 K

Experimental setup and thermal modelling
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In-situ calibration for the paints

• Directional emissivity

• Reflection between the 

camera lens and the windowDetect 𝜀 at each pixel 

Optimise parameter of 𝑅, 𝐵, 𝐹, 𝐶

𝐼𝐷 = 𝜀
𝑅

𝑒𝐵/𝑇𝑜𝑏𝑗 − 𝐹
+ 1 − 𝜀

𝑅

𝑒𝐵/𝑇𝑎𝑚𝑏 − 𝐹
+ 𝐶

› ›

𝐼𝐷 = 𝜀
𝑅

𝑒𝐵/𝑇𝑜𝑏𝑗 − 𝐹
+ 1 − 𝜀

𝑅

𝑒𝐵/𝑇𝑎𝑚𝑏 − 𝐹
+ 𝐶

Heat at 373 K

IRT

𝐼𝐷

PC
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Spatial calibration

Steel: Low emissivity

1
0

 m
m

D = 5 mm

Image captured by IRT

› ›

Identify measurement location



Imperial College London

Experimental setup and thermal modelling

23

Thermal modelling

Material properties

• Steel

• Ceramic

• Copper

𝑇𝑟𝑒𝑓  : The Meador-Smart method

𝑆𝑡𝑥: The Chilton-Colburn analogy

Mesh resolution: 
5mm

The wind tunnel 

log

𝑆𝑡𝑥 =
0.0296

5 𝑅𝑒𝑥

𝑃𝑟−0.67

𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 = ℎ𝑥(𝑇𝑏𝑙 − 𝑇𝑤)

ℎ𝑥 = 𝑆𝑡𝑥 𝜌𝑟𝑒𝑓𝑈∞𝐶𝑝

 

›
›

›

Boundary condition

𝑡𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 = −1.5 [𝑠]
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Test cases and initial conditions

Case Number of

measurements

𝑇𝑡𝑎𝑟𝑔𝑒𝑡[K] 𝑇𝑖𝑛𝑡[K] 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝑖𝑛𝑡[K] Temperature drop [%]

Case323K 3 323.2 319.5 3.7 7.4

Case373K 3 373.2 362.1 11.1 11.1

Case423K 2 423.2 404.6 18.5 12.3

Case323K

Case373K

Measurement area

t = 0 s
Initial surface temperature

Case423K
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Prediction and measurement results
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Measurement results

Case373K

Case423K

t = 10 s t = 15 s

Case323K

Material properties

• Steel

• Ceramic: Insulator

• Copper: Conductor
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Prediction and measurement results
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Transient temperature at Case323K

Thermal modelling Experiment

15sec

›
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Overlaying experimental measurements & thermal modelling predictions

Case323K Case373K Case423K
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Transient temperature along centreline at Case373K

3sec 9sec 15sec

Thermal model

› ›

Conductor(Copper)

Insulator(MACOR)

Experiments

Θ =
𝑇

𝑇∞
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Transient temperature at all cases after t = 15 s

Case323K Case373K Case423K

Increase temperature difference
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Prediction and measurement results
Transient temperature along spanwise after 15 s

Temperature differences increase

moving downstream

Significant temperature differences

even close to the leading edge

High spanwise temperature

Gradients (>> sinusoidal)
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Prediction and measurement results
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Transient temperature along spanwise after 15 s

Case323K Case373K Case423K

Obvious temperature difference between the strips
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Prediction and measurement results
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Non-dimensional temperature difference after t=15s

Θ =
𝑇

𝑇∞

BL acts coolingHeating

𝑇𝑟

𝑇∞
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Streak Measurement
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Current progress for setting up Laser Doppler Anemometry (LDA)
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Streak Measurement
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Preliminary results
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Conclusion

• Experiment and thermal modelling

• Thermal modelling capturing a qualitative trend 

of the experiment

• Higher Temperature difference can be achieved by 

higher initial temperature input

• Temperature gradient becomes high between the insulator 

and the conductor

• Global temperature distributions can be controlled by

material properties and initial temperature

• Ongoing work

• Conduction of Laser Doppler Anemometry (LDA)

to quantify velocity for streaks

37

Temperature

performance test

Streak 

performance test

Preliminary design

Concept

›
›

›
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