CFD based predictive tools for liquid hydrogen hazards

Jennifer X Wen (FREng, FIMechE)

University of Surrey j.wen@surrey.ac.uk

FIRE AND EXPLOSION MODELLING GROUP https://www.surrey.ac.uk/fire-and-explosion-modelling-group

We are a multi-disciplinary research group specialising in the development and validation of consequence modelling tools to address cross cutting safety issues related to energy, transport and environment.

Research areas

Gaseous hydrogen safety

Liquid hydrogen safety

Safety of lithium ion batteries

Fires in the built and natural environment

Pipeline safety

Safety of liquified natural gas

1. <u>LH₂ vapour cloud from sudden catastrophic release</u>

- 2. Unignited releases of liquid hydrogen
- 3. Ignited releases of hydrogen jets at cryogenic conditions
- 4. Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen (LH₂)

LH₂ vapour cloud from sudden catastrophic releasee

Key assumptions:

- LH₂ flash evaporation prior to the formation of liquid pool was neglected
- Without retention pit, LH₂ spreads instantaneously to the minimum thickness of 5 cm estimated from surface roughness
- A square pool to facilitate meshing and to speed up the simulations.
- With retention pit, LH₂ content fills the pit instantaneously.
- Height of retention pit not considered.

Atmospheric conditions according to Pasquill-Gifford stability:

- A unstable
- D neutral
- F stable

Validation using NASA test 6

Witcofski RD, Chirivella JE. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills. Int J Hydrogen Energy 1984; 9(5): 425-35.

Predicted H_2 molar concentration at =

	Experiment	Prediction
Horizontal extent of visible cloud	160	173
Vertical extent of visible cloud	65	69
Duration of visible cloud	90	88

Vapour cloud from 1 ton release of LH₂ and LNG

Ambient temperature: 293K 3 m/s stable condition

 LH_2 Without retention pit (<u>3F</u>) 0 – 100 Red line: 4% H₂ molar concentration

LNG

Without retention pit (<u>3F</u>) 0 - 150

⁸Red line: 5% CH₄ molar concentration.

Contents

- **1.** LH₂ vapour cloud from sudden catastrophic release
- 2. <u>Unignited releases of liquid hydrogen</u>
- 3. Ignited releases of hydrogen jets at cryogenic conditions
- 4. Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen (LH₂)

DNS of the near-field features of cryogenic jets (1)

Subtopic 1

Ren, Zhaoxin and Wen, Jennifer X. (2020) AIP Advances, 10 (9). 095303.

Fire and Explosion Modelling Group

DNS of the near-field features of cryogenic jets (2)

Fire and Explosion Modelling Group

Subtopic 1

5 bar

 Instantaneous distributions of density gradient for Case HP from t = 50 to 80µs shown in time interval of 10 µs.

• The red dashed lines denote the region of HLP > 0.

Ren, Zhaoxin and Wen, Jennifer X. (2020) AIP Advances, 10 (9). 095303. E. S. Hecht and P. P. Panda, Int. J. Hydrogen Energy 44(17), 8960–8970 (2019).

3 bar

Contents

- 1. LH₂ vapour cloud from sudden catastrophic release
- 2. Unignited releases of liquid hydrogen
- 3. Ignited releases of hydrogen jets at cryogenic conditions
- 4. Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen (LH₂)

LES of ignited releases of hydrogen jets at cryogenic conditions (1)

Subtopic 1

One equation eddy-viscosity SGS model^[1] for compressible flow

EDC^[2] with detailed hydrogen chemistry^[3] (9 species and 19 steps) for non-premixed flame None-unity Lewis number effect: The molecular transport model of Burali N, et al. (2016)

Total pressure	200bar
Total temperature	80K
Nozzle diameter	4mm

Case	Ignition position, z (m)	Ignition temperature (K)
0.5IG	0.5	2000
1.0IG	1.0	2000
2.0IG	2.0	2000

Yoshizawa A. Physical Review E, 1993, 48(1): 273. Parente A, Malik M R, Contino F, Cuoci A, Dally B B. Fuel, 2016, 163: 98-111. Ó Conaire M, Curran H J, Simmie J M, Simmie J M, Pitz W J, Westbrook C K. Int J of Chemical Kinetics, 2004, 36(11): 603-622. N. Burali, S. Lapointe, B. Bobbitt, G. Blanquart, Y. Xuan,, Combustion Theory and Modelling, 2016, 20(4).

LES of ignited releases of hydrogen jets at cryogenic conditions (2) Subtopic 1

Table 1 Summary of the ignition locations consideredCase #UFF05F10F15F20Ignition location, z_{ig} (m)/0.51.01.52.0

Flame structure of ignited jet for Case F10, Case F15, and Case F20 marked using $X_{H2} = 0.04$ iso-surface colored by temperature (K).

Fire and Explosion Modelling Group

LES of ignited releases of hydrogen jets at cryogenic conditions (4)

Evolution of combustion field at the y-z middle-plane for Case F05.

(e) t = 20 ms(a) t = 12 ms(b) t = 14 ms(c) t = 16 ms(d) t = 18 ms(f) t = 22 ms1.6 2200 1900 1.4 1600 $(\mathbf{u})_{\mathbf{1}}^{1.2}$ 1300 1000 700 0.6 400 0.4 100 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 -0.5 $\mathbf{y}(\mathbf{m})$ y(m) $y(\mathbf{m})$ $y(\mathbf{m})$ $\mathbf{v}(\mathbf{m})$ $\mathbf{v}(\mathbf{m})$

Evolution of combustion field at the *y-z* middle-plane for Case F10.

Here, the contours are temperature (K), and the black dashed isolines refer to hydrogen mass fraction Y_{H2} = 0.02.

Subtopic 1

LES of ignited releases of hydrogen jets at cryogenic conditions (5)

Subtopic 1

Snapshots of the flame shapes: (a) experiment (reproduced from Friedrich et al. (2021) and (b) Case F20.

Snapshot of the deflagration waves: (a) experimentally observed (reproduced from [20]), (b) predicted pressure contour for Case F15, (c) predicted density contour (kg/m³) with static pressure iso-line of 1.03 atm.

A. Friedrich, A. Veser, G. Necker, J. Gerstner, N. Kotchourko, M. Kuznetsov, T. Jordan, Characterization of high-pressure cryogenic hydrogen jet fires (ignited DISCHA), *PRESLHY Dissemination Conference*, 5-6 May, 2021.

Contents

- 1. LH₂ vapour cloud from sudden catastrophic release
- 2. Unignited releases of liquid hydrogen
- 3. Ignited releases of hydrogen jets at cryogenic conditions
- 4. <u>Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen</u> (LH₂)

Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen (1)

Subtopic 3

Pool size	$5 \times 5 m^2$
Mass	600 kg LH ₂
Wind	3 m/s
Temperature	20.4 K
Barrier walls	5 or 10 m at 30 or 40 m from pool centre
Ignition	40 s for a duration of 0.5 s.

Predicted temperature for the cases with and without a barrier just prior to the ignition

Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen (2)

Subtopic 3

Cloud before ignition

Post ignition

Temperature

Overpressure

Time: 40.00 s

Vapour cloud explosions from instantaneous large-scale releases of cryogenic liquid hydrogen (3)

Subtopic 3

Fire and Explosion Modelling Group

Concluding remarks

- The use of hydrogen as aviation fuels brings new challenges associated it with accidental releases and ignition.
- Further knowledge gaps also exist the hydrogen is most likely to be stored onboard in its liquid form.
- If potential releases (*united/ignited*) exit the aircraft, knowledge gaps also exist about how they affect the aerodynamics of the aircraft and its contrails.